
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 2, SECOND QUARTER 2010 249

A Taxonomy of IEEE 802.11 Wireless
Parameters and Open Source Measurement Tools

Diego Dujovne, Thierry Turletti, and Fethi Filali

Abstract—The analysis and evaluation of new wireless network
protocols is a long process that requires mathematical analysis,
simulations, and increasingly experimentations under real con-
ditions. Measurements are essential to analyze the performance
of wireless protocols such as IEEE 802.11 networks in real
environments, but experimentations are complex to perform
and analyze. Usually, network researchers develop their own
tools, sometimes from scratch, to fit the requirements of their
experimentations, and these tools are then abandoned when the
paper is published. In this study, we emphasize the importance,
for the network research community, to use and contribute
to the development of open source measurement tools. In this
regard, we propose a survey and classification of IEEE 802.11
wireless parameters and open source tools available to collect
or estimate these parameters. We highlight the parameters that
can be extracted from wireless traffic probes and those that
are available through the driver of wireless cards. Then, we
introduce and compare open source tools that can be used to
make the measurements, with special attention to the flexibility
of the tools and their application scope. Finally, we discuss with
several case studies the combination of tools that best suit the
needs of the wireless experiments and provide a list of common
pitfalls to avoid.

Index Terms—IEEE 802.11, open source software, probes,
wireless analyzers, wireless measurements, wireless parameters.

I. INTRODUCTION

IT HAS LONG been recognized that wireless networks
play an important role in the access networks at the

border of the Internet. The most deployed wireless access
networks are those based on the IEEE 802.11 standard [1].
However, these networks are affected by many problems such
as exposed and hidden terminals [2] and possible high packet
loss due to the unreliable and time-varying nature of the
wireless channel. Pre-existing applications that once used to
work flawlessly in a wired environment have to be adapted
to wireless and new services are rapidly emerging to take
advantage of mobility and portable devices. However, the
elaboration of new transmission mechanisms, and especially
the validation procedure is a complex task to perform. Usually,
an analytical evaluation is performed to assess the basic
behavior of the protocol. Then simulations are used to study
and analyze the new protocol with various conditions in a

Manuscript received 9 April 2008; revised 13 August 2008 and 2 December
2008.
D. Dujovne is currently with Universidad Diego Portales, Chile (email:

ddujovne@mail.udp.cl). This work has been done while he was in the Planète
project-team, INRIA, France.
T. Turletti is with the Planète project-team, INRIA, France (e-mail:

turletti@sophia.inria.fr).
F. Filali is with the Mobile Communications department of Institut Euré-

com, France (e-mail: fethi.filali@eurecom.fr).
Digital Object Identifier 10.1109/SURV.2010.021110.00020

fully-controlled environment. But simulators generally can not
reflect with enough accuracy the impact of composite factors
on the performance of transmission protocols such as hidden
terminals, capture effect, fading, scattering and interference.
So, experimentation is necessary to test the new protocol under
more realistic conditions, although this environment offers less
controllability than simulation [3], [4].
Within the evaluation process, the wireless experimentation

is regarded as the most difficult task to perform because it
needs a complex set up and it requires to monitor and analyze
a large number of parameters. Some commercial solutions1

can be applied as Mahanti et al. [6] demonstrate through
the analysis of 1 billion wireless frames from a platform
installed on the University of Calgary campus. But most often,
specific tools have to be developed to satisfy the specific
needs of each experiment because of the lack of adaptable
tools available for the corresponding experimentation scenario.
This leads to the design of programs that can not be used for
any other experiment without significant changes, and often
with poor or nonexistent documentation to possibly make
these changes. As a general case, when the experiment is
finished and the results are published, the tool is abandoned
and sometimes lost forever. We argue that the development of
flexible wireless measurement and analysis open source tools
will highly benefit the network research community. Several
open source measurement tools for IEEE 802.11 networks
already exist, and some of them can be used to run wireless
experiments. Few of these tools have been originally designed
for research purpose, and most of them have been developed to
monitor networks, discover topologies or to identify anomalies
and security breaches.
This paper aims to help the reader in choosing the best

set of tools to achieve his/her specific needs by providing a
survey and taxonomy of available measurement and analysis
wireless tools. In particular, we focus on measurement tools
for the Linux Operating System such as data acquisition tools,
filtering and analysis tools, which form links of a global eval-
uation chain. The snapshots of tools presented in this survey
is current as of November 2008. While the tools mentioned
in the paper are all available in the public domain, to the best
of our knowledge there is no study available that provides
a deeper analysis of existing measurement tools for 802.11-
based networks and that discusses their relevance according to
the user needs. The objective is to avoid re-inventing the wheel
for each new experiment where the desired functionalities may
already be present in existing tools (or combination of tools).

1A list of commercial monitoring tools can be found also at the “Wi-Fi
Planet“ site [5].

1553-877X/10/$25.00 c© 2010 IEEE

250 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 2, SECOND QUARTER 2010

We also emphasize that selecting the most efficient tools with
regard to the target metrics to measure is a critical step to
perform prior to evaluating network protocols.
The remainder of this paper is organized as follows. Sec-

tion II introduces the 802.11 protocol basics and in particular
the PHY and MAC layer characteristics. Section III identifies
and classifies the most important wireless parameters of the
IEEE 802.11 standard. Section IV presents the steps required
to perform wireless measurements. Section V introduces open
source tools through an exhaustive survey of publicly available
measurement tools. Section VI presents several case studies
of wireless experiments and some common pitfalls to avoid.
Finally, Section VII concludes the paper.

II. BASICS OF IEEE 802.11

A. 802.11 PHY Layer

IEEE 802.11 gathers together several standards for wireless
local area network (WLAN) computer communication, devel-
oped by the IEEE LAN/MAN Standards Committee (IEEE
802) in the 5 GHz and 2.4 GHz public spectrum bands [1].
These standards specify both physical (PHY) and medium
access control (MAC) layers. In 1997, IEEE defined three
kinds of options in the PHY layer, which are an infrared (IR)
baseband PHY, a frequency hopping spread spectrum (FHSS)
radio and a direct sequence spread spectrum (DSSS) radio. All
these options support both 1 and 2Mbps PHY rates. In 1999,
two high rate extensions were defined: (1) 802.11b based
on DSSS technology, with data rates up to 11Mbps in the
2.4GHz band, and (2) 802.11a, based on orthogonal frequency
division multiplexing (OFDM) technology, with data rates up
to 54Mbps in the 5GHz band. In 2003 the 802.11g standard
was proposed that extends the 802.11b PHY layer to support
data rates up to 54Mbps in the 2.4GHz band. This family of
wireless standards and several other amendments have been
merged in a single document called IEEE 802.11-2007 [1].
IEEE 802.11 is still evolving. For example, IEEE 802.11n is
an expected amendment to the IEEE 802.11-2007 wireless
standard to significantly improve network throughput over
previous standards. It builds on previous 802.11 standards by
adding multiple-input multiple-output (MIMO) and 40 MHz
operation to the PHY layer, operating on both 2.4GHz and
5GHz bands.
It is well known that 802.11 wireless channels are prone to

high error rates and channel variability compared to wired Eth-
ernet [7]. Examples of sources for channel variability include
multipath propagation, mobility and time-varying multiuser
interference. Indeed, 802.11b/g devices suffer interference
from a large number of products operating in the unlicensed
2.4 GHz band. Devices operating in the 2.4 GHz range
include microwave ovens, Bluetooth devices, baby monitors
and cordless telephones. Since the 2.4 GHz band is heavily
used to the point of being crowded, using the less overloaded 5
GHz band gives 802.11a a significant advantage. However, this
high carrier frequency also brings problems and the effective
overall range of 802.11a is slightly less than that of 802.11b/g.
Indeed, 802.11a signals cannot penetrate as far as those for
802.11b because they are absorbed more easily by walls and
other solid objects in their path.

B. 802.11 MAC Layer

The 802.11 MAC layer aims to provide access control
functions to the wireless medium such as access coordination,
addressing or frame check sequence generation. Two different
classes of wireless configuration have been defined for 802.11:
The infrastructure network, where many stations (STAs) can
communicate with the wired backbone through an access point
(AP), and the ad hoc network, where any device can commu-
nicate directly with other devices, without any connectivity to
the wired backbone. In infrastructure mode, an AP works as
an authentication and network association device, and can act
as a bridge with other networks. A group of STAs coordinated
by 802.11 MAC functions is called a basic service set (BSS)
in infrastructure mode and independent BSS (IBSS) in ad
hoc mode, respectively. The IEEE 802.11 MAC sub-layer
defines two medium access coordination functions, the basic
Distributed Coordination Function (DCF) and an optional
mode called Point Coordination Function (PCF), which is
unused in practice.
DCF is an asynchronous transmission mode based on Car-

rier Sense Multiple Access with Collision Avoidance scheme
(CSMA/CA). Collision detection can not be implemented
because, due to the nature of the channel, a station is not
able to transmit and listen at the same time [7]. Actually, two
different carrier sensing mechanisms are used: PHY carrier
sensing at the air interface and virtual carrier sensing at the
MAC layer. PHY carrier sensing detects the presence of other
STAs by analyzing all packets received from other STAs.
Virtual carrier sensing is optionally used by a station to inform
all other stations in the same BSS (or IBSS) how long the
channel will be reserved for its frame transmission. The sender
can set a duration field in the MAC header of data frames, or in
the Request-To-Send (RTS) and Clear-To-Send (CTS) control
frames. Then, other stations will update their local timers
of network allocation vectors (NAVs) to take into account
this duration. The RTS/CTS mode is often used to reduce
collisions in presence of hidden nodes [8].
IEEE 802.11e-2005 (or 802.11e) is an amendment to the

IEEE 802.11 standard that defines a set of quality of service
(QoS) enhancements for WLAN applications through mod-
ifications to the MAC layer, and has been incorporated into
the IEEE 802.11-2007 specification. In order to provide queue
based QoS support, a new MAC layer coordination function
has been proposed, called hybrid coordination function (HCF).
Within the HCF, two interoperable methods of channel access
are defined: HCF Controlled Channel Access (HCCA) and
Enhanced Distributed Channel Access (EDCA). HCCA is
based on polling, while EDCA is based on a slotted and highly
parametric CSMA/CA protocol. The 802.11e amendment is
important for delay-sensitive applications, such as voice over
wireless IP and multimedia streaming.

C. Structure of 802.11 Frames

All of the 802.11 frames share the same basic PHY level
structure: a preamble to train the receiver followed by a Start
of Frame (SOF) delimiter; a Physical Layer Convergence
Procedure (PLCP) header and the payload called the MAC
Protocol Data Unit (MPDU). The PLCP carries the signal field

DUJOVNE et al.: A TAXONOMY OF IEEE 802.11 WIRELESS PARAMETERS AND OPEN SOURCE MEASUREMENT TOOLS 251

TABLE I
COMMON DLT HEADER VALUES

Parameter Description

Timestamp

Packet arrival time. At the radiotap header,
there is the MAC timestamp, which corre-
sponds to the arrival of the first bit of the
packet. libpcap [9] adds another timestamp
extracted from the system clock, after the
packet has arrived to the kernel level.

RSSI

Received Signal Strength Indication. Mea-
sures the average receiving power of the
packet. The RSSI value and bounds varies
between implementations [12].

Channel Channel number where the packet was
transmitted.

Noise level
Characterizes the background noise level
measured before packet reception on the
channel at the receiver.

Data Rate Physical bit rate of the packet payload.

Preamble PLCP preamble length (short or long).

containing the payload data rate, a service field describing
modulation characteristics, the length of the payload in mi-
croseconds and the Cyclic Redundancy Check (CRC) of the
PLCP header. The preamble and the PLCP header are trans-
mitted at 1Mbps regardless of the current data transmission
speed. Three types of MPDU exist: Management, Control or
Data.

III. A TAXONOMY OF WIRELESS PARAMETERS

Wireless parameters are essential to monitor the network, to
detect possible anomalies or to analyze deeply the behavior of
network protocols. A very large number of wireless parameters
exist at different levels of the protocol stack, and are available
either from the wireless card drivers or through packet traces.
In this section, we propose a classification of most common
wireless parameters that distinguishes between per-packet, per-
flow, per-station and per-BSS wireless parameters.

A. Per-Packet Wireless Parameters

Per-packet wireless parameters are those included in PHY
and MAC headers of each packet and are available through
packet sniffing. The following two subsections detail the most
important PHY and MAC information present in IEEE 802.11
frames sniffed from the wireless medium.
1) PHY data information: As we mentioned in section II-C,

every 802.11 frame starts with a training sequence, a Start
Of Frame (SOF) marker and a PLCP header. When a sniffer
captures a frame, the three of them are removed on the
hardware interface before the frame arrives to the driver, and
an artificial header, called DLT (Data Link Type), is added
instead. Different formats of DLT headers exist and they are
defined in the pcap [9] library. DLT headers include PHY-
level information captured by the network interface card. Note
that if some PHY-level parameters are not supported, the user
still has the possibility to add the missing features himself.
However, such changes require OS kernel development skills
and assume that sufficient chipset documentation is available.
The different types of DLTs specified in the pcap library

include a variety of media like fiber optics, PPP serial links,

ethernet and wireless networks. For 802.11 networks, the most
popular ones are AVS2 [10], PRISM3 and radiotap [11]. These
three DLT types share some common parameters shown in
Table I. In the remainder of the paper, we focus on the
radiotap header type because it provides more features than
the other header types. The radiotap header type consists
of a standard preamble followed by an extensible bitmap
indicating the presence of optional capture fields packed into
the header as compactly as possible. This typically includes
information such as rate, channel number, signal at per-packet
basis RSSI (Receive Signal Strength Indicator measured for
the PLCP header by the circuitry on the wireless network
interface card [12]) and timing information (a 64-bit field
in microseconds indicating when the first bit of the MPDU
arrives at the MAC).
2) MAC data information: On top of the physical layer, lies

the MAC layer. Table II identifies the main fields included in
the MAC header of IEEE 802.11 frames, see [1]. We also
present a use example for each of them.

B. Per-Flow Statistical Parameters

Per-flow statistical parameters are essential to analyze the
performance of applications on top of IEEE 802.11 wireless
networks, or to study the fairness between the different sta-
tions. They are general industry-accepted statistical parameters
obtained by processing packet traces sniffed on the wireless
medium, i.e., by analyzing packet presence, packet headers
and arrival time.
Table III presents a non-exhaustive list of per-flow statistical

parameters with a use case example for each of them.

C. Per-Station Statistical Parameters

Each station may have several active flows in the same
time. It is sometimes useful to analyze the performance of
all flows that belong to the same station. Per-station statistical
parameters correspond to the aggregation of per-flow statistical
parameters detailed in the previous subsection, plus statistical
parameters including:

• active flag: true if the station has at least one flow
running,

• association state: associated or disassociated,
• association duration,
• MAC address of the current associated AP,
• Current Received Signal Strength Indication (RSSI) [15],
[12],

• Current uplink physical transmission rate.

D. Per-BSS Statistical Parameters

Per-BSS statistical parameters include the aggregation of
per-station wireless parameters, and other statistics such as the
parameters described in Table IV. These wireless parameters
are used to monitor and to analyze the characteristics of the
whole channel.

2AVS: (AbsoluteValue Systems, Inc).
3Originally designed by Intersil Inc., PRISM Wireless LAN business is

now part of Conexant Systems Inc.

252 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 2, SECOND QUARTER 2010

TABLE II
MAC HEADER STRUCTURE

Parameter Description

Type/Subtype
These two fields together identify the function of the received frame. They are useful
to classify the traffic between management, control and data frames. Each of the frame
types has several defined subtypes.

More Fragments field
Set to 1 when it is not the last part of the frame. This indicator is useful to reassemble
a sequence of fragments and to compute fragment loss.

Retry field
Set to 1 if this frame is a retransmission of an earlier frame. This bit helps in eliminating
duplicating frames and enables many measurements on frame loss, since the frame is
retried a fixed number of times.

Power Management field

Indicates when the sender toggles to power save mode. The behavior of the Access
Point changes when at least one of the stations is in power save mode. In particular,
multicast and broadcast packets are transmitted only after fixed periods and unicast
packets are buffered for the station.

More Data field Set to 1 if there are buffered unicast frames for the destination station.

Protected Frame field
Set to 1 if the frame body field contains information that has been processed by a
cryptographic encapsulation algorithm. Encryption is systemwide, for monitoring and
statistics purposes, while decrypting is only required if the payload is of interest.

Duration

The contents of this field vary with frame type and subtype. For data frames, if the
More Fragments bit is set to 1, and the destination address field contains an individual
address, the duration value is set to the time, in microseconds, required to transmit
the next fragment of this management frame, plus two ACK frames, plus three SIFS
intervals. To calculate the medium idle time, the duration value must be taken into
account.

Addresses

Identify the basic service set identifier (BSSID), source address, destination address,
transmitting station address and receiving station address of the frame. Certain frames
may not contain some of the address fields. This information is useful to identify the
different stations and to classify the individual flows. Roaming stations can also be
identified when starting sessions on different APs.

Sequence Control
Carries a sequence number and a fragment number. The former can be used to identify
lost frames and to detect intrusions and/or failures while the latter indicates which part
of the packet is being carried by the current frame.

Frame Check Sequence4
Trailer of the frame, it is used to verify the integrity of the frame through a CRC.
Frames with errors can be logged to identify the source of lost frames.

Backoff5
Derived from the difference between the timestamp values of successive frames, this
parameter can be used to detect MAC layer misbehavior [13].

IV. STEPS TO RUN WIRELESS MEASUREMENTS

The most important source of information to analyze wire-
less networks are statistics inferred from packets sent on the
channel. They are obtained using packet sniffers, which are
stations that passively listen all the packets on the medium.
Furthermore, statistics provided by the drivers of wireless
cards can be used as a complementary source of information,
and the range of statistics available depends on the evolution
state of the driver. The choice of open-source drivers as
madwifi [21], enables the instrumentation of the driver and
also the sharing of the source code with other laboratories
in order to validate the experiments. More complete PHY
and MAC layers capture data can be obtained with hardware
specific platforms like GNU Radio [22] or WARP [23], but
these fall out of the scope of this publication.
In the following, we describe the different steps involved in

doing wireless measurements.

• Sniffing: The packet sniffing task consists in retrieving
all frames transmitted on the wireless medium. It can be

4The FCS parameter is not part of the MAC header. It is the last field of
the MAC frame and follows the Frame Body field.
5The backoff parameter is not included in 802.11 MAC header, it is

computed by software.

divided in two stages: The first one is the hardware side,
which depends exclusively on the ability of the wireless
cards to detect, decode, buffer and transfer the packets to
the PC bus (either through PCI, PCMCIA, USB, PCI
express or whichever standard communications bus is
used). The second one is the software side, where the
driver sends a copy of any received or transmitted packets
to a part of the kernel called the packet filter. By default,
all the packets are then copied from the kernel space to
the user space where the sniffer is actually running. To
create a sniffer, the driver of the wireless card must be
configured in monitor (also called promiscuous) mode.
Each sniffer generates an event log (or a packet trace)
composed of all packets sniffed6 on the wireless channel.

• Merging: Producing an accurate packet trace requires
great care. In the wireless domain, spatial diversity pre-
vents any single sniffer from capturing the overall traffic.
Thus, many spatially dispersed sniffers are required to
reconstruct all the traffic. Using too few packet sniffers,
placing them poorly, or using inadequate hardware can in-
troduce missed or reordered packets and incorrect times-

6For obvious privacy reasons, the payload of packets should be discarded
before building up packet traces.

DUJOVNE et al.: A TAXONOMY OF IEEE 802.11 WIRELESS PARAMETERS AND OPEN SOURCE MEASUREMENT TOOLS 253

TABLE III
PER-FLOW STATISTICAL PARAMETERS

Parameter Description

Goodput
Measures the packet arrival rate during a fixed period of time at the application level.
It can be used to evaluate the quality perceived by the application.

Data loss rate

Measures the number of data frames lost during a period of time, it is the inverse of the
data delivery ratio. The loss can be due to transmission errors (e.g. noise, interference),
buffer overflow or collisions. It can be used to estimate the link quality, the quality
perceived by the application or as feedback to adaptive wireless-aware protocols.

Data loss burstiness
Measures the number of packets which are lost consecutively. This parameter can be
used to measure the quality of a link or to tune the error correction algorithms [14].

Delay

Measures the latency at the application layer for a frame from departure at the
transmitter to the arrival at the receiver. The delay is a consequence of queuing, packet
retransmissions and packet transmission on the medium. It can be used to estimate the
channel load or to evaluate performance of real time applications.

Jitter
Estimate of the statistical variance of the data packet interarrival time. High variability
may harm the protocol stability and performance; It can be the result of packet loss
bursts, after successive retransmissions. Same use cases as for the delay.

Airtime Stands for the effective transmission time on the medium. This parameter is used as a
fairness metric between the flows that share the same wireless channel.

Retransmission probability
It is function of the packet loss rate observed for both data and acknowledgement
transmission. It can be used to estimate the link quality.

TABLE IV
PER-BSS STATISTICAL PARAMETERS

Parameter Description

Channel capacity
Theoretical maximum traffic rate at the physical layer. For example, it is equal to
11Mbps for IEEE 802.11b and to 54Mbps for IEEE 802.11a.

Overall data throughput Aggregated throughput of all data packets transmitted on the medium. It can be used
to estimate the channel load.

Overall signaling throughput
Aggregated throughput of management and control frames (such as beacon,
RTS/CTS/ACK) of all packets transmitted on the medium. It can be used to compute
the channel overhead.

Packet loss spatial correlation

Identifies the packet loss related to the position relative to the AP and the other
attached stations. This information is available from the correlation between packet
logs (source and receiver probes) and from the wireless driver statistics logs (packets
lost at the sending queues are not considered). It can be used to analyze and improve
the performance of multicast transmission protocols [16], [17].

Load level
Number of packets present in the wireless medium per time unit. It indicates the level
of medium usage.

Available bandwidth
Corresponds to the rate at which a new flow can send traffic without affecting competing
flows. Different algorithms have been proposed to estimate the available resources,
see [18], [19], [20].

tamps. When multiple sniffers are used, the independent
traces have to be combined and synchronized down
to microsecond granularity to construct a synchronized
single trace of all frame transmissions [24], [25], [26],
[27].

• Processing: Once an accurate packet trace is ready, the
actual processing can start. First, if some packets present
on the trace are not relevant for the analysis, they can
be filtered out from the packet trace to speed up the
following computations. Then the parameters to analyze
can be extracted, possibly combined with other sources
of statistics (like the ones provided by the wireless
card drivers). Various computations can follow, such as
average calculation and the result can be displayed to the
user.

• Monitoring: If the processing task is done in realtime,
i.e. when sniffing and processing operations are done
simultaneously, it is called monitoring in the remainder

of the paper. Monitoring is useful to analyze in realtime
the network behavior, for example to detect network
anomalies. It can be implemented using a single packet
sniffer combined with a simple packet analyzer.

V. TOOLS FOR WIRELESS MEASUREMENTS

This section proposes a classification of the main open
source tools that can be used to characterize wireless exper-
iments. Wireless measurement tools come in three different
flavors: Adaptations or derivatives from wired measurement
tools, like Wireshark and Mognet; Monitoring tools spe-
cific to the wireless environment like Kismet, Wifiscanner
and Wavemon; and tools which target experimental wireless
measurements, like Airtraf, Jigsaw or WisMon. A tool is
required for each of the tasks we have defined on section IV.
Furthermore, some tools can be used for different purposes;
for example, Wireshark can be used for capturing and to do
filtering as a processing task. At the end of the section we

254 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 2, SECOND QUARTER 2010

provide a classification where each of the tool is assigned to
one or multiple tasks to execute during an experiment.
In the following, we distinguish between tools that retrieve

wireless parameters through the driver of wireless cards from
tools that capture and/or process logs of packets sniffed from
the wireless channel. We present only the most essential
features of each tool. The reader can find further technical
details in the references provided in the text.

A. Tools Based on Driver-Level Statistics

As we mentioned in Section IV, the drivers of wireless cards
can be used as a complementary source of statistical informa-
tion. The madwifi driver [21] is currently the most advanced
open source driver available for Atheros-based wireless cards.
It uses the Wireless Extensions for Linux and has companion
applications to simplify the configuration and the statistical
data capture. It allows to print the internal PHY and MAC
events to the system log through the athdebug and 80211de-
bug utilities respectively [28]. Also, the driver keeps internal
statistics which can be accessed through the athstats [29]
utility for the PHY related statistics, and using the 80211stats
utility for the MAC statistics. Although the madwifi driver
itself is open source, it depends on the proprietary Hardware
Abstraction Layer (HAL), which is only available in binary
form. However, it is currently evolving to a full open source
driver called ath5k, which does not depend on the HAL.
Furthermore, some devices store these statistics in man-

agement information bases (MIBs). In this case, the statistics
can be retrieved using Simple Network Management Protocol
(SNMP) tools [30]. However, note that SNMP statistics can
sometimes be inaccurate and should consequently be used with
caution [31].
Wireless Tools for Linux: The Linux Wireless Extensions

(WE) and the Wireless Tools (WT) [32] form a generic
API allowing a Linux driver to expose to the user space
configuration and WLAN statistics. This set of tools creates
a uniform interface at the user space to configure, control,
query and debug the wireless interfaces. A typical usage
example of wireless tools is the access to the aggregate data
statistics using iwconfig, the setting of specific driver-level
parameters with iwpriv and the listing of the results of access
points in range. They use a very basic textual interface and
are included by default on most Linux kernels. However,
different or invalid implementations of these utilities may lead
to erroneous results, so these statistics should be compared
with known statistics to guarantee that the results are coherent.
The Wireless tools for Linux are distributed as open source
code under the GNU Public Licence (GPL).
WaveMon: WaveMon [33] is an example of a wireless

monitoring tool that uses the Wireless Extensions for Linux.
It is a ncurses-based lightweight wireless monitor tool that
can be run with or without a GUI. It supports devices with
low processing power and low resolution display and allows
to watch in realtime the signal and noise levels, packet
statistics and wireless card configuration. Two different views
are available: A snapshot of the current state of the wireless
link statistics, and a historical graph for the same parameters.
During an experiment, Wavemon can provide basic insight

about the link quality from the signal power side. It can not
be used for batch mode experiments because packet logging
is not available; all the processing is done in realtime. Current
version is 0.4.0b and it is distributed as source code under the
GNU public license for the Linux operating system. A typical
application of Wavemon is monitoring during the experiment.
WRAPI: WRAPI [34] is not a tool but a hardware-

independent library that allows applications to access MAC-
layer information. It requires an application on top of it to call
the functions, and execute data capture. So it is not functional
by itself, but it is very useful to perform measurements on a
Windows platform, and, to our knowledge, it is the only open
source package that works on Windows XP. WRAPI uses the
NDIS user mode I/O protocol to communicate from the user-
mode side to the driver. Using this communication protocol,
it is possible to query information and set parameters. A
limited number of parameters is available, including wireless
configuration, packet level statistics, current MAC address,
signal strength and AP information, but per-packet information
is not available. It is worth mentioning that the statistical
information provided by the driver for part of parameters is
preprocessed internally, e.g. to calculate running average. As
preprocessing operations affect the measurement results, the
fact that these operations are not documented and the corre-
sponding source code is not publicly available is problematic
to perform rigorous analysis. This library was developed for
Windows XP exclusively, and Version 2.0 of the source code
is available on the WRAPI website [34] without any license
information.
Finallly, Figure 1 illustrates the position of driver-level

statistic tools within the Operating System.

B. Measurement Tools Based on Packet Traces

In this section we discuss relevant open source tools that
can be used to perform the measurement tasks described in
Section IV, i.e., sniffing, merging, processing and monitoring.
As most tools implement more than one of these tasks, it
is difficult to classify them based on their functionalities
and we have chosen to present them in the alphabetical
order. To recapitulate, Table VI gives a snapshot of the main
functionalities of each tool at the end of the section.
Airtraf: Airtraf [35] is a wireless analyzer that gathers accu-

mulated wireless statistics from each station and for each TCP
flow. It can be used to monitor wireless statistics during an
experiment, such as packet count, byte count, bandwidth usage
and signal strength. It can also analyze the state of APs and
the associations between stations and APs. Airtraf is sniffing-
based and depends on underlying libraries to capture packets.
There is no graphical interface available as open source for the
polling server. Airtraf allows to create a “near realtime” picture
of the wireless parameters, access points, stations present in
the BSS and on TCP flows transmitted between them. This
information is presented either as a cumulative (for packet or
byte counts), mean value (e.g. power value) or instantaneous
value (e.g. current bandwidth usage). Unfortunately, there is
no historic log nor graphical user interface display to analyze
the behavior of parameters. Furthermore, there is no event
log to follow the transactions from the management packets.

DUJOVNE et al.: A TAXONOMY OF IEEE 802.11 WIRELESS PARAMETERS AND OPEN SOURCE MEASUREMENT TOOLS 255

Hardware

Driver

Wireless Tools

API
Interface

Wavemon

WRAPI

Windows

Libpcap

Win driver

Linux

User
Space

Kernel
Space

User
Space

Kernel
Space

Fig. 1. Position of driver-level statistics tools

Version 1.1 of Airtraf for Linux is available under the GNU
public license, but a commercial branch of this tool is available
from Elixar Inc.

EasySnuffle: EasySnuffle [36] is a measurement tool com-
posed of a collection of modules to insert on the kernel, device
drivers and user space. These modules act as probes at MAC,
IP and UDP layers and have been designed for analyzing
performance of multimedia transmissions over wireless net-
works. The basic setup includes a specific wireless device
driver for the Prism2 chipset, a custom modified kernel and
a user application. The main advantage of this tool is the
possibility to instrument the system at different levels of the
communication stack. However, the last version of the tool was
released in 2002 and the modules lack flexibility to evolve to
a newer version of the kernel. The source code is available
for the Linux operating system at the Snuffle website [37].
Although this tool is rather outdated, we have included it as
an example of instrumentation through all the measurement
chain. Using this type of instrumentation, it is easier to do a
cross layer analysis since all the data is captured on the same
time basis.

Jigsaw: Jigsaw [26] is a multi-sniffer tool for infrastructure
wireless systems that combines the packet traces to generate a
comprehensive view of events taking place in the network. It is
used to fulfill the sniffing and merging tasks. To synchronize
the time across traces gathered by multiple sniffers, Jigsaw
identifies frames that are overheard by multiple (but not all)
monitors. It tackles the problem of clock drifts (the change
in skew over time) using an exponentially weighted moving
average of past skew measurements to predict future skew
on a per-instance basis. Jigsaw can be used offline to gather
and synchronize all the collected traces from an experiment.
The output is composed of a single file including all the
packets collected during the experiment. This tool allows to
reconstruct a complete description of all link- and transport-
layer conversations. Some inference techniques are used to
deduce the presence, time placement, and even contents of
missing data. Version 2.4 of this tool is available under the
GPL license from the Jigsaw website [38] for the Linux
operating system.

Kismet: Kismet [39] is a monitoring tool used to discover
wireless networks. It creates a list of available access points
in the selected channels and a list of attached stations using
information contained on collected packets. For each item, it
provides detailed information such as the addresses, traffic and
station activity. The lightweight text-based interface allows
the user to build a monitoring system without loading a
graphical server. The main advantage of this tool lies in its
ability to recover and gather in a smart way per-station traffic
and fill station information structures with the results. This
tool can also provide GPS information about scanned APs
using the gpsd open source tool. Flexibility of Kismet comes
from the client-server architecture, built as a server processing
engine and a client, interconnected with a proprietary protocol.
The client (and possibly multiple clients) can be run on a
different machine than the server. This tool does not provide
any statistical analysis tools, although it can be used as a
source of disassembled packets for data capture. Since Kismet
includes a packet dissector, an application can be built on top
of it to retrieve only the relevant parameters, which can be
selected in realtime through the client-server communication
protocol. Kismet runs on Linux with a large number of cards
and can also run on Windows but only on cards that support
AirPcap from CACE Technologies. It is licensed under the
GPL and current version 2007-10-R1 is available at the Kismet
website [39].

Mognet: Mognet [40] is a basic sniffer and analyzer tool
that has been designed for personal digital assistants (PDAs)
that support Java. It captures packets in realtime and disassem-
bles the 802.11 headers using either a graphical or a text-based
interface. Mognet can also generate output in libpcap format.
The main objective of this tool is to display and disassemble
packets with no further analysis, but with the possibility to
examine packets collected in realtime. It does not include
processing and analysis functionalities because the processing
power is still limited in PDAs. It is inspired by Ethereal. Since
this tool can generate trace logs, it can be integrated within
experiments where merging and postprocessing are done in
batch mode. Although Mognet has not evolved since 2003,
the current 1.16 version still works on any wireless cards that
support the monitor mode. Mognet is available under the GNU

256 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 2, SECOND QUARTER 2010

public license and works on any PDA that includes a Java
interpreter and a C compiler.
Pcap: The pcap library7 [9] is not a tool but since it is the

core of many tools such as tcpdump and kismet, it is worth
mentioning it in this section. Libcap is an open source library
that provides a high level interface to network packet capture
systems. The goal of this library is to create a platform-
independent API to eliminate the need of system-dependant
packet capture in each application, as every OS vendor may
implement its own capture mechanisms. As we mentioned in
Section III-A1, different types of DLTs are specified in this
library, including a variety of media like fiber optics, PPP
serial links, ethernet and wireless networks.
Wifiscanner: Wifiscanner [41] is an analyzer/detector of

IEEE 802.11b STAs and APs which can listen alternatively
on all the 14 channels. It can be used to monitor parameters
during an experiment and also for sniffing. Wifiscanner also
includes an integrated IDS (Intrusion Detection System) to
detect anomalies like MAC usurpation. A basic text-based
interface is provided for passive sniffing operation. This tool
provides the user a realtime packet disassembly of the 802.11
header. It also keeps cumulative values of the observed packet
types at the MAC level. A list of current stations can be
displayed with the number of transmitted packets. All network
traffic can be saved in the pcap format for post analysis.
Current version 1.02 is available under the GNU public license
for Linux operating system [41].
Wireshark: Wireshark [42] (formerly Ethereal) is the de

facto open source network protocol analyzer. It integrates a
general-purpose packet sniffer and packet analyzer tool for
almost any type of network. It includes a very powerful packet
dissector and classifier tool and currently supports more than
700 different protocols. Specific filters can be built for each
field of the captured packets. However, Wireshark lacks post-
processing and analysis tools, providing only basic statistics
and graphs. The main packet list uses coloring filters, which
helps to identify faster which type of packets are present. It
also includes decryption support for many protocols, including
IPsec, WEP and WPA/WPA2. Packet timestamps come from
the Winpcap- packet capture library, which is independent
from Wireshark. Version 1.0.2 of Wireshark is available under
the GNU GPL and runs on Windows, Linux, MAC OS X,
Solaris, FreeBSD and NetBSD operating systems [42].
Wismon: Wismon [43] is a packet analyzer tool that has

many useful functionalities for a wireless experimental usage.
It provides physical parameters in realtime for evaluation
during experiments and allows to record logs for further
processing. It can be used for building a single view of
the whole wireless communication channel. Wismon uses
multiple probes running Kismet (version 2004-10-R1). Us-
ing a kismet patch, probes synchronize the timestamp with
the beacon timestamp at the probe level, providing ready-
synchronized packets. The Wismon tool uses a client-server
architecture. The server creates a single list of packets and
discards duplicated packets heard by the different probes.
This list is thoroughly analyzed and the packet headers are

7The pcap library is called libpcap on Unix-like systems and Winpcap on
Windows systems.

classified per station. The Wismon client shows the list of
the current stations at the server and displays for each station
its characteristics in real time. Version 0.1.R3 of this tool is
available under the Cecill8 license for the Linux operating
system from the Wismon website [43].
Wit: Wit [27] is MAC analyzer tool for IEEE 802.11 net-

works that includes a distributed passive sniffing mechanism.
It collects traces obtained from multiple and independent
passive sniffers and stores them in a common database.
Wit can be used to perform the merging task of wireless
experiments. Three processing steps are done to construct an
enhanced trace of packets. First, a robust merging procedure
combines the necessarily incomplete views from multiple,
independent sniffers into a single, more complete trace of
wireless activity. Next, an inference engine based on formal
language methods is used to reconstruct packets that were not
captured by any sniffer and to determine whether each packet
was received by its destination. Finally, it derives network
performance measurements from this enhanced trace. Wit is
available online [44] as perl scripts that process data traces.
CRAWDAD repository of tools: The CRAWDAD [45]

(Community Resource for Archiving Wireless Data At Dart-
mouth) website contains a repository of basic scripts and tools
to process packet logs and SNMP statistics. Various scripts can
be used to extract fields and flags from individual packets, to
create a list of stations from the packet logs, to anonymize
the packet traffic (in order to be published later in the public
domain), and to estimate the location of devices. Most of these
tools and scripts tools are available under the GNU public
license (or some variations of it) for the Linux OS.
Snapshot of Tools: Table V-B and Table VI provide, respec-

tively, the input/output formats and a snapshot of the main
characteristics for each of the tools described above.

VI. USE OF TOOLS

This section presents a set of case studies to demonstrate
the use of tools discussed in Section V. We propose for each
scenario the combination of tools that best suit the needs of
the experiment. Then we present a list of common pitfalls to
avoid.

A. Case Studies

In the following, nine examples of measurements are pre-
sented. We have selected the tools according to their pertinence
and their practical approach: e.g., for configurability and
standard logging format, the use of tcpdump file format
for packet logs. In most cases, custom scripts that fit the
wireless experiment needs have to be used jointly with the
measurement tools. Driver-level tools like Wireless Extensions
for Linux and WaveMon presented on Section V-A are inde-
pendent from the packet capture tasks. So, they can be used
on any of the case studies below to provide snapshots of PHY
and MAC statistics.

• Throughput: Throughput measurement consists in
counting the amount of bits transmitted per second be-
tween the AP and each of the stations. In this experiment,

8see http://www.cecill.info/ .

DUJOVNE et al.: A TAXONOMY OF IEEE 802.11 WIRELESS PARAMETERS AND OPEN SOURCE MEASUREMENT TOOLS 257

TABLE V
I/O FORMATS OF WIRELESS MEASUREMENT TOOLS

Input Method/Format Output format
Packet Pcap Wireless Tools Tool Text Graphical Text Pcap DB
Capture for Linux API UI UI√

Airtraf
√

√
Easysnuffle

√ √
√ √

Jigsaw
√

√ √
Kismet

√ √ √
√

Mognet
√

√
Wavemon

√
√

Wifiscanner
√ √

√ √
Wireshark

√ √ √
√

Wismon
√ √

√
Wit

√

the wireless traffic is captured using several wireless
probes, which are configured in promiscuous mode. We
propose to use Wireshark to capture and filter packets
for each station, because it provides two usage modes:
In the first place, a test can be done using the graphical
user interface of Wireshark, where the wireless traffic
can be observed while it is being captured. This helps
to check if anomalies occur on the captured traffic (like
periodic disconnection of an Access Point), which may
void the experiment. In the second place, and in order not
to interfere with the environment, the user can execute
remotely a command-line version of Wireshark, called
Tshark. If the analysis is targeted to a single or multiple
flows, packet filtering is also possible using Wireshark
as a postprocessing engine. After obtaining the filtered
packet list, the user can execute a custom script to extract
the packet description header containing the packet size
and the timestamp, in order to compute various statistics
such as throughput. WisMon can be also used to monitor
the experiment remotely, using either a new probe or one
of the probes used by Wireshark.

• Contention Window: The contention window size cor-
responds to the period between the end of the SIFS/DIFS
and the start of the next packet. Note that the DLT header
of each packet contains the receiving timestamp. For
practical reasons, we propose to use Wireshark to cap-
ture the packets, and the algorithm described by Berger
et al. to measure packet interarrival times with high
precision [46]. This type of measurement only requires
filtered logs of packet lengths and their timestamps,
which are present in the DLT header. A custom script is
used to extract timestamps and packet sizes. No merging
is required since traffic is light and the probe is near
to the source. Kismet can be used for monitoring and
detecting any unexpected events. Indeed, in this scenario
monitoring is only useful to identify possibly foreign
packets coming from nearby stations not participating on
the experiment.

• Airtime: As mentioned in Section III-B, the airtime
measures the medium utilization from the calculation
of transmitted packet length. This is useful to analyze
the application-level throughput relative to usage of the
physical wireless channel, see [47], [48]. We propose to
use Jigsaw for the capture, synchronization and merging

operations because for this experiment, we need the
most complete view of the wireless environment, which
can be provided by a single list of all the participating
packets. Then, a custom script can be run to calculate the
airtime, by extracting from the packet logs the timestamp,
the packet length, the type of preamble, the duration
and the transmission rate per packet. Monitoring can be
performed using Airtraf as well as Wismon to watch the
overall throughput from each of the concurrent sources.
This solution is better than using separate tools for each
task, because the overall processing can be done within
the merged packet log.

• Spatial packet loss: In this experiment, the goal is
to estimate the correlation between sent and received
packets with respect to the position of stations. The
pattern of bit errors changes according to signal reflec-
tions, diffractions and interferences, which may affect
neighboring stations. For instance, such a behavior can
be caused by interference created by an AP present on a
nearby channel. We propose to use Wireshark to collect
the packets and to only keep in memory those which
belong to the flows under study. In this case, merging and
synchronization operations must not be done because it is
critical to analyze the same packets captured on different
probes. Then, packet loss correlation can be computed
on packet logs using a custom script that analyzes the
packet sequence number to find out which packets are
missing for each source. In such a simple algorithm,
a packet lost by all the stations is suspected to be a
collision while a packet lost only by individual stations is
considered as noise. On the other hand, a packet lost by
more than one station (but not all of them) is suspected
to be the outcome of a local effect between stations
of the same characteristics (region/distance). Note that
heavy traffic conditions can generate packet drops before
transmission on the wireless medium. This type of loss
could be badly interpreted as collisions on the wireless
medium. So, we recommend to monitor queue drop count
both at the AP and at the STAs: such information can
be obtained from specific instrumentation of the wireless
card drivers. Monitoring can be achieved using Wismon,
which provides per-station statistics for retransmissions
and traffic.

• Analyzing capture effect: The capture effect, also called

258 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 2, SECOND QUARTER 2010

TABLE VI
CHARACTERISTICS OF WIRELESS MEASUREMENT TOOLS

Tool Sniffing Merging Processing Monitoring Comments Platform

Airtraf No No No
Throughput,
Text-based
interface

New version be-
came commercial,
including the web
interface

Linux

EasySnuffle Single probe No Statistics extraction No Driver and kernel
instrumentation

Linux

Jigsaw
Multiple
probes

real-time
merging

Filtering, Traf-
fic reconstruc-
tion

No

To sync, uses expo-
nentially weighted
of past skew mea-
surements

Linux

Kismet
Multiple
probes No No

Throughput,
Text-based
interface

Very popular and
advanced wardriv-
ing tool

Linux and
Windows
(restricted)

Mognet Single probe No Filtering No
Java based, tar-
geted for portable
devices

Multiplatform
(tool mostly
written in Java)

Wavemon No No No

Statistics
calculation,
Text-based
interface

No logging Linux

Wifiscanner No No No
Network struc-
ture graph gen-
eration

Wardriving oriented Linux

Wireshark Single probe No
Filtering and
flow analyzer No

Very extensive pro-
tocol decoding Multiplatform

WisMon
Multiple
probes

Real-time
merging No

Data classifica-
tion per source,
recent history
buffer

Packet logging and
offline analysis Linux

Wit No
Offline
merging

Filtering, Traf-
fic reconstruc-
tion

No

Has a formal lan-
guage to
describe conversa-
tions between hosts

Multiplatform
(tool mostly
written in Perl)

co-channel interference tolerance, is the ability of certain
radios to correctly receive a strong signal from one
transmitter despite significant interference from other
transmitters. In other words, a frame with the highest
received signal strength can be successfully decoded at
the receiver in presence of simultaneous transmissions of
several stations. Lee et al. have studied this problem using
a testbed with the aim to capture as many collisions as
possible [49]. For each collision, the timestamp, signal
strength and bit rate parameters have been analyzed. We
propose to use Jigsaw to perform packet capture, traces
merging and synchronization, since here we need again
the global view of the traffic, and also the ability to
discriminate the existence of detected and undetected col-
lisions. After the construction of a single list of packets,
a custom script will serve to analyze the superposition of
packets and to detect possible capture effect by inspecting
timestamps and packet lengths. The experiment can be
monitored either using WisMon to display a graphical

view of the traffic involved with the measured power, or
Airtraf, to get the mean values during the experiment.

• Impact of Rx power on packet loss: This experiment
aims to study the sensitivity of a flow to variations of
the receiving power (and consequently SNR). The exper-
iment layout is simple: One AP sends data at decreasing
power levels with fixed rate and constant packet size to
three receivers placed at different locations within range.
This experiment helps us understand the performance of
packet-level power control to increase power efficiency
on portable devices. For practical reasons, we suggest the
use of Wireshark to control the packet capture and to filter
data. Then, a custom script can be used to compare the
sequence number between the transmitted and received
packets in order to compute the packet loss. We also
propose WisMon for monitoring, as this tool can provide
per-second received power information.

• Impact of Tx rate on packet loss: The objective of this
experiment is to measure the efficiency of the physical

DUJOVNE et al.: A TAXONOMY OF IEEE 802.11 WIRELESS PARAMETERS AND OPEN SOURCE MEASUREMENT TOOLS 259

rate selection algorithm using packet loss information.
We keep the same layout than for the previous experi-
ment: one transmitter AP sends packets with decreasing
rates keeping a fixed transmission power level and a
constant packet size to three receiver stations at dif-
ferent locations within range. But for this experiment,
we propose different tools: Wireshark for capturing and
filtering and Wit to create a database with the physical
parameters of the transmitted packets. Finally, a custom
script will use the sequence number from the database
and the packet rate to analyze the percentage of packets
received for each transmitted rate. The most important
task to monitor this experiment is to ensure that the
packet transmission from the source does not stop, and
this can be done with either Kismet or Airtraf.

• Impact of mobility: Mobility has critical effects on
packet loss, delay and throughput because it generates
higher variations of the channel characteristics, increasing
the bit error rate. To measure the impact of mobility, the
traffic received at each mobile station has to be captured.
We propose to use the combination of Mognet and Wit
tools: Mognet to collect traffic received on stations, and
Wit to analyze and reconstruct traffic patterns. Although
Wit was not initially intended for mobility environments,
its traffic inference engine can be helpful in analyzing
very lossy channels. The experiment can be monitored
with Kismet using a fixed transmitter or receiver, to
ensure that there is no unexpected anomaly (such as a
disconnection or a malfunctioning station).

• Flood attack detection: Flood attack is a common threat
for APs. Although recent APs are ready to manage such
attacks, there are still many devices that can be severely
affected by them. To detect this type of attack, we propose
to use the combination of Wifiscanner and Wireshark
tools: Wifiscanner for monitoring and detecting traffic
pattern of a flood attack, and Wireshark as a general
purpose tool for capturing and storing the traffic. Then,
a custom script can be used offline to identify potential
sources of attack.

Table VII regroups the above examples of wireless mea-
surements and recapitulates the corresponding recommended
tools.
From the former examples of wireless measurements, sev-

eral patterns arise: Wireshark is essentially a sniffing and
filtering tool. Packet logs can easily be analyzed, merged
and synchronized using Wit. Jigsaw covers the capture, merg-
ing and synchronization tasks altogether; its usage is more
recommended when there is no special filtering to be done
before merging the packet logs. Monitoring can be performed
by Kismet to analyze which stations are participating on the
experiment, and detect packets coming from other stations
during the experiment. Wismon as a monitor is convenient
for experiments where both PHY and MAC layers and in-
volved. Mognet is often used as a replacement of Wireshark
for mobility-enabled experiments, whereas Airtraf decom-
poses the traffic on different layers. Airtraf can be used for
monitoring purposes during flow-oriented experiments and/or
experiments with cross-layer interactions. Wifiscanner targets
security experiments, since it can detect certain misbehavior

patterns from the STAs. For the processing stage, all the
solutions use a custom script. As we have mentioned earlier,
there is a small collection of custom scripts available at the
CRAWDAD repository, which can help as a starting point to
fulfill more specific functions.
One can notice the lack of flexibility for data processing in

the list of tools presented above. Although packet log capture,
merging and synchronization utilities are available, once the
traces are merged, the result is a binary file with tcpdump
format to be processed. This file, which can become huge after
a few minutes of experimentation, can be processed with the
pcap library to extract the packets, decode them into fields and
extract the relevant parameters to plot the graphs and analyze
the results. This operation represents a heavy and unrewarding
task. Moreover, custom scripts used to process the results are
generally rewritten from scratch for new experiments. The
need for custom scripts shows that there is no standard tool to
process straight the data and obtain standard graphs like the
probability density function (pdf) from a specific parameter,
or the interarrival time for a particular packet flow.

B. Common Pitfalls to Avoid

In this section, we present a non exhaustive list of very
common pitfalls which can occur during experiments and
some suggestions to avoid them when possible.

• CPU overload at the sniffer: In Section IV, we men-
tioned that when a station uses the promiscuous mode,
the wireless card driver sends a copy of any received
or transmitted packets to a part of the kernel called the
packet filter. Then all the packets have to be copied from
the kernel space to the user space where the sniffer is
actually running. Interruptions can be handled late if the
OS is overloaded. If a packet arrives late, the arrival
timestamp added by the capture library looses accuracy9.
The copy operation consumes a lot of CPU time and
can overload the machine, causing the kernel to drop
packets. If only part of packets have to be analyzed,
we suggest to construct a specific filter expression that
fits the measurement needs, and apply it to the packet
filter. Portoles-Comeras et al. [50] have measured the
capture limits of a wireless experimental platform, based
on commercial off-the-shelf hardware. They have shown
that sniffers can offer full rate capture when correctly
calibrated, i.e. up to the level of saturation loss. Within
their layout, they observed a limit of 2500 packets per
second for Atheros sniffers and 2150 packets per second
for Prism-based cards. At the kernel level, there is place
for improvement on the packet capture efficiency, as
Deri [51] shows in the case of wired networks for high
speed capture. Nevertheless, current 802.11a/b/g packet
capture rate has not reached yet to the bound where these
improvements would be needed.

• Traffic overload: Caution is required in interpreting
packet loss in presence of high data rate traffic, because
packet loss can also occur due to buffer overflow. We sug-
gest to use flexible wireless card drivers such as madwifi

9Note that the receiver’s wireless device further adds a timestamp on the
radiotap header to identify the arrival of the first bit of the packet.

260 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 2, SECOND QUARTER 2010

TABLE VII
RECOMMENDED TOOLS FOR DIFFERENT USAGES

Type of Experiment Recommended Tools
Sniffing Merging Processing Monitoring

Throughput Wireshark Wit
Wireshark &
Custom script Wismon

Contention Window Wireshark Not needed Custom script Kismet

Airtime Jigsaw Jigsaw Custom script Airtraf
Spatial packet loss Wireshark Not needed Custom script Wismon
Analyzing capture
effect

Jigsaw Jigsaw Custom Script Wismon or
Aitraf

Impact of Rx power
on packet loss Wireshark Not needed

Wireshark filter-
ing+
Custom Script

Wismon

Impact of Tx rate
on packet loss Wireshark Not needed

Wireshark filter-
ing+
Custom Script

Kismet or
Airtraf

Impact of mobility Mognet Wit Custom Script Kismet

Flood attack detection Wireshark Not needed Custom script Wifiscanner

which can be easily instrumented to identify potential
packet loss due to high contention on the medium.

• Card/OS-dependent performance: The sniffing process
can produce different results according to the type of
wireless card driver and to the operating system. As we
mentioned in Section III-A1, when a sniffer captures a
frame, it replaces the PLCP header by a DLT header
whose format depends on the wireless card driver. But
the packets captured may also differ from one operating
system to the other. To cope with heterogeneous header
formats, the pcap library is widely used on Linux plat-
forms. Libpcap opens a special type of capture socket
to retrieve all types of packets. However, such a func-
tionality is not available on Windows platforms. Indeed,
the corresponding Winpcap library drops all control
packets received and so, many frames are not available at
the upper layers. Furthermore, using Winpcap, packets
sniffed are converted in fake ethernet packets, which
causes the removal of some important information, like
reception power level, noise, channel, modulation or
MAC timestamp. For Windows platforms, we suggest to
use a commercial capture library such as Airpcap [52]
from CACE technologies company, which allows to re-
trieve all data, control and management 802.11 frames.

• Positioning sniffers and merging traces: As we men-
tioned in Section IV, a single probe may not be able to
observe all the frames sent to or from a particular AP due
to radio reception and range. It is therefore very important
to use spatially dispersed sniffers and to synchronize the
different traces at the microsecond granularity. Merging
wireless traces is a critical operation and we suggest the
use of verification mechanisms such as the one proposed
by Schulman et al. [53], which evaluates the fidelity
of merged and independent wireless network traces by
estimating their completeness and clock accuracy.

• Imprecise RSSI measurements: The Receiver Signal
Strength Indicator is known to be inaccurate in different
platforms. For instance, measurements provided by the
Atheros 5212 chipset do not allow for a fine-grained

differentiation in the range relevant to bit-rate selection
(especially at bit-rates below 36Mbps) [54]. Due to the
fact that the IEEE 802.11 standard does not specify
a required method of measuring RSSI, signal strength
numbers from different vendors should not be compared
to each other, since they are probably measuring it in
different ways [12].

• Identifying sources of interferences: Without special
electromagnetic isolation, like anechoic chambers [55],
802.11 devices suffer interference from a large number
of products operating in the unlicensed 2.4 GHz band,
see Section II-A. When stations are not mobile, most of
the channel power variability is due to moving objects
around. For example, a temporal signal fading occurs
when an object obstructs the line of sight (LOS) between
the stations and the AP. Also, as IEEE 802.11 channels
are not orthogonal, possible interchannel interference in
crowded spectrum and unplanned configurations can de-
crease drastically the performance of wireless protocols.
Furthermore, during an experiment, a number of nearby
machines or devices passing by can interfere with the
experiment/measurement, even if the packets are sent
on non-orthogonal channels. This is the case for mobile
stations that try to associate to the nearest APs using
active probing. Another source of interference is due
to recent Smart APs implementing internal algorithms
that periodically scan the overall channels to detect
neighbor APs and to dynamically select the clearest
channel to use. Therefore, it is important to characterize
all potential sources of interferences during the wireless
measurements phase. A spectrum analyzer could be used
jointly with wireless probes to complete and refine the
measurement process.

VII. CONCLUSION

In this paper, we proposed a taxonomy of IEEE 802.11
wireless parameters and relevant open source measurement
tools that can be used for wireless experimentations and
monitoring. We focus on tools available in the public domain

DUJOVNE et al.: A TAXONOMY OF IEEE 802.11 WIRELESS PARAMETERS AND OPEN SOURCE MEASUREMENT TOOLS 261

for the Linux environment and discuss their features and usage
with several case studies. Then, we present some common
pitfalls to avoid while performing wireless measurements.
There is still a wide choice of development branches for

collaboration and development for wireless monitoring and
experimentation. For instance, there is still no support of
the wireless headers for 802.11e parameter extraction and
interpretation, nor support for MIMO radio parameters for
the upcoming IEEE 802.11n standard. Data management for
wireless experimentation is currently at an early development
stage. Not only the packet traces should be collected and
stored for further analysis, but also the layout, experimental
conditions and configuration corresponding to the experimen-
tation. Such information is very important to perform rigorous
performance analysis of wireless protocols.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
suggestions that help to improve the presentation of the
paper. This work was partially supported by the EU FP7 IST
OneLab2 grant No 224263.

REFERENCES

[1] "IEEE Standard for Information technology-Telecommunications and
information exchange between systems-Local and metropolitan area
networks-Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications", IEEE Std
802.11-2007 (Revision of IEEE Std 802.11-1999), June 12 2007.

[2] L. Kleinrock and F. Tobagi, "Packet switching in radio channels part II:
The hidden terminal problem in carrier sense multiple-access modes and
the busy-tone solution," IEEE Trans. Commun., Vol. COM-23, No. 12,
pp. 1417-1433, 1975.

[3] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott,
"Experimental evaluation of wireless simulation assumptions," Proc. of
ACM MSWiM, October 2004.

[4] D. Kotz, C. Newport and C. Elliott, "The Mistaken Axioms of Wireless-
network Research", Technical Report TR2003-467, Dept. of Computer
Science, Darmouth College, July 2003, [Online]. Available: http://pdos.
csail.mit.edu/decouto/papers/kotz03.pdf.

[5] Wireless Warrior [Online]. Available: http://www.wireless-warrior.org/
software/sniffing/.

[6] A. Mahanti, C. Williamson and M. Arlitt, "Remote analysis of a dis-
tributed WLAN using passive wireless-side measurement", Perform. Eval.
64, 9-12, pp. 909-932, October 2007.

[7] A. Goldsmith, "Wireless Communications", Cambridge University Press,
ISBN 0-521-83716-2, 2005.

[8] S. Khurana, A. Kahol, and A.P. Jayasumana, "Effect of hidden terminals
on the performance of IEEE 802.11 MAC protocol", Proc. of 23rd
Conference on Local Computer Networks (LCN), pp. 12-20, 1998.

[9] Libpcap [Online]. Available: http://www.tcpdump.org/.
[10] AVS Capture Frame Format, [Online]. Available: http://www.

locustworld.com/tracker/getfile/prism2drivers/doc/capturefrm.txt.
[11] Radiotap [Online]. Available: http://www.radiotap.org.
[12] J. Barker, "You Believe You Understand What You Think I Said: The

Truth About 802.11 Signal And Noise Metrics", Document D100201,
2004 - Connect802 Corporation, [Online]. Available: http://www.
connect802.com/download/techpubs/2004/you_believe_D100201.pdf.

[13] M. Raya, J.P. Hubaux and I. Aad, "DOMINO: a system to detect greedy
behavior in IEEE 802.11 hotspots", Proceedings of the 2nd international
conference on Mobile systems (MobiSys), Boston, MA, June 2004.

[14] F. Vacirca and A. Baiocchi, "Characterization of Service Times Bursti-
ness of IEEE 802.11 DCF," Wired/Wireless Internet Communications,
Springer, 2007, pp. 223-234.

[15] J. Bardwell, "Converting Signal Strength Percentage to dBm Values,"
November 2002, WildPackets Inc., [Online]. Available: http://www.
wildpackets.com/elements/whitepapers/Converting_Signal_Strength.pdf.

[16] D. Dujovne and T. Turletti, "Multicast in 802.11 WLANs: an experimen-
tal study," Proc. of the 9th ACM international Symposium on Modeling
Analysis and Simulation of Wireless and Mobile Systems (MSWiM),
Torremolinos, Spain, October 2-6, 2006. pp. 130-138.

[17] J. Lacan and T. Perennou, "Evaluation of Error Control Mechanisms for
802.11b Multicast Transmissions," International Workshop on Wireless
Network Measurement (WinMee), Boston, MA, USA, April 3, 2006.

[18] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla and M. Y. Sanadidi, "CapProbe:
A Simple and Accurate Capacity Estimation Technique," Proc. of ACM
SIGCOMM’04, Portland, OR, USA, September 2004.

[19] K. Lakshminarayanan, V. N. Padmanabhan, and J. Padhye, "Bandwidth
Estimation in Broadband Access Networks," Proc. of ACM IMC’04,
Taormina, Sicily, Italy, October 2004.

[20] A. Johnsson, B. Melander, and M. Bjorkman, "Bandwidth Measurement
in Wireless Networks," Mediterranean Ad Hoc Networking Workshop
(Med-Hoc-Net), Porquerolles, France, June 2005.

[21] Madwifi project [Online]. Available: http://madwifi.org/.
[22] Gnuradio [Online]. Available: http://www.gnu.org/software/gnuradio/.
[23] Warp [Online]. Available: http://warp.rice.edu.
[24] J. Yeo, S. Banerjee and A. Agrawala, "Measuring traffic on the wireless

medium: Experience and pitfalls", Technical report, CS-TR 4421, Uni-
versity of Maryland, College Park, December 2002. [Online]. Available:
http://www.cs.umd.edu/Library/TRs/CS-TR-4421/CS-TR-4421.pdf.

[25] J. Yeo, M. Youssef and A. Agrawala, "Characterizing the IEEE
802.11 Traffic: The Wireless Side," CS-TR-4570, March 2004.
[Online]. Available: http://www.cs.umd.edu/Library/TRs/CS-TR-4570/
CS-TR-4570.pdf.

[26] Y.C Cheng J. Bellardo, P. Benko, A.C. Snoeren, G.M. Voelker and S.
Savage, "Jigsaw: Solving the Puzzle of Entreprise 802.11 Analysis," in
Proc. of ACM SIGCOMM, Pisa, Italy, September 11-15 2006.

[27] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, "Analysing the
MAC-level Behavior of Wireless Networks in the Wild," Proc. of ACM
SIGCOMM, Pisa, Italy, September 11-15 2006.

[28] Athdebug and 80211debug documentation, Madwifi v0.9.4, [Online].
Available: http://madwifi.org/wiki/DevDocs/AthDebug.

[29] athstats.c, Madwifi v0.9.4 source code, [Online]. Available: http://www.
madwifi.org.

[30] R. Presuhn et al., "Version 2 of the Protocol Operations for the Simple
Network Management Protocol (SNMP)," IETF RFC 3416, December
2002.

[31] T. Henderson and D. Kotz, "Problems with the Dartmouth wireless
SNMP data collection," Dartmouth Computer Science Technical Report
TR2003-480, December 2003.

[32] Wireless Tools for Linux [Online]. Available: http://www.hpl.hp.com/
personal/Jean_Tourrilhes/Linux/Tools.html.

[33] Wavemon tool [Online]. Available: http://www.janmorgenstern.de/
projects-software.html.

[34] Wrapi [Online]. Available: http://sysnet.ucsd.edu/pawn/wrapi/.
[35] Airtraf tool [Online]. Available: http://airtraf.sourceforge.net.
[36] C. Hoene, B. Rathke and A. Wolisz: “EasySnuffle: A tool to measure the

performance of multimedia flows over IEEE 802.11b”, Technical Univer-
sity of Berlin TKN - Berlin - Germany, March 10, 2002, [Online]. Avail-
able: http://www.tkn.tu-berlin.de/research/easysnuffle/EasySnuffle.pdf.

[37] Easysnuffle tool [Online]. Available: http://www.tkn.tu-berlin.de/
research/easysnuffle/.

[38] Jigsaw tool [Online]. Available: http://sysnet.ucsd.edu/wireless/.
[39] Kismet tool [Online]. Available: http://www.kismetwireless.net.
[40] Mognet tool [Online]. Available: http://www.monolith81.de/mognet.

html.
[41] Wifiscanner tool [Online]. Available: http://wifiscanner.sourceforge.net.
[42] Wireshark tool [Online]. Available: http://www.wireshark.org.
[43] WisMon tool [Online]. Available: http://planete.inria.fr/software/

WisMon/.
[44] Wit tool [Online]. Available: http://www.cs.washington.edu/research/

networking/wireless/index.html.
[45] Crawdad repository [Online]. Available: http://crawdad.cs.dartmouth.

edu/tools.php.
[46] G. Berger-Sabbatel, Y. Grunenberger, M. Heusse, F. Rousseau and A.

Duda, "Interarrival Histograms: A Method for Measuring Transmission
Delays in 802.11 WLANs," Research Report, LIG - Grenoble Informatics
Laboratory, Grenoble, 2007, [Online]. Available: http://drakkar.imag.fr/
spip.php?article242.

[47] K. Papagiannaki, M. Yarvis, and W. S. Conner, "Experimental Charac-
terization of Home Wireless Networks and Design Implications," Proc.
IEEE INFOCOM, Barcelona, Spain, April, 2006.

[48] R.G. Garroppo, S. Giordano, S. Lucetti, and L. Tavanti, "Providing air-
time usage fairness in IEEE 802.11 networks with the deficit transmission
time (DTT) scheduler," Wireless Network, 13, 4 August 2007, 481-495.

[49] J. Lee, W. Kim, S. Lee, D. Jo, J. Ryu, T. Kwon and Y. Choi, "An
experimental study on the capture effect in 802.11a networks," Proc. of
the Second ACM international Workshop on Wireless Network Testbeds,

262 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 2, SECOND QUARTER 2010

Experimental Evaluation and Characterization (WinTECH), Montreal,
Quebec, Canada, September 10, 2007.

[50] M. Portoles-Comeras, M. Requena-Esteso, J. Mangues-Bafalluy, M.
Cardenete-Suriol, "Monitoring wireless networks: performance assess-
ment of sniffer architectures," Proc. of IEEE ICC, Istambul, Turkey,
pp.646-651, June 2006.

[51] L. Deri, S.P.A. Netikos, K. Via Del Brennero and L.L. Figuretta,
“Improving passive packet capture:beyond device polling”, Proc. of
SANE, Amsterdam, The Netherlands, September 2004.

[52] Airpcap product, CACE technologies [Online]. Available: http://www.
cacetech.com/products/airpcap_family.htm.

[53] A. Schulman, D. Levin and N. Spring, "On the Fidelity of 802.11 Packet
Traces", 9th Passive and Active Measurement conference, Cleveland,
Ohio, April 2008.

[54] K. Ramachandran, H. Kremo, M. Gruteser, P. Spasojevic and I. Seskar,
"Scalability Analysis of Rate Adaptation Techniques in Congested IEEE
802.11 Networks: An ORBIT Testbed Comparative Study", Proc. of
WoWMoM, Helsinki, Finland, June 2007.

[55] G. Rahmatollahi, S. Galler, J. Schroeder, K. Jobmann and K. Kyamakya,
“Propagation Delay Based Positioning Using IEEE 802.11b Signals”,
Proc. of 3rd Workshop on Positioning, Navigation and Communication
(WPNC), Hannover, Germany, March 2006.

Diego Dujovne obtained his Electronic Engineer 6-year degree from National
University of Cordoba, Argentina in 1999. Between 1999 and 2001 he worked
as lecturer at the Informatics and Electronics Departments and from 2002 to
2004 he worked as a full-time Adjoint-Professor as the director of the Digital
Signal Processing Lab at UNC, Argentina. He obtained his PhD at the Planète
project-team at INRIA Sophia Antipolis, France in 2009, and he is currently
a full-time researcher and lecturer at Universidad Diego Portales, Chile. His
research interests include MAC layer development for wireless networks,
WLAN multicast improvements and Wireless experimental measurements.
Additionally, he is member of IEEE since 1994.

Thierry Turletti received the M.S. (1990) and the
Ph.D. (1995) degrees in computer science both from
the University of Nice - Sophia Antipolis, France.
He has done his PhD studies in the RODEO group
at INRIA Sophia Antipolis. During the year 1995-
96, he was a postdoctoral fellow in the Telemedia,
Networks and Systems group at LCS, MIT. He is
currently a senior research scientist at the Planète
group at INRIA Sophia Antipolis. His research in-
terests include multimedia applications, congestion
control and wireless networking. Dr. Turletti serves

on the Editorial Board of the Wireless Communications and Mobile Com-
puting (WCMC), Wireless Networks (WINET) and Advance on Multimedia
(AM) journals.

Fethi Filali received his Computer Science Engi-
neering and DEA degrees from the National College
of Informatics (ENSI) in 1998 and 1999, respec-
tively. At the end of 1999, he joined the Planète
research team at INRIA (National research institute
in informatics and control) in Sophia-Antipolis to
prepare a Ph.D. in Computer Science which he has
defended on November 2002. During 2003, he was
an ATER (Attaché Temporaire d’Enseignement et
de Recherche) at the Université of Nice Sophia-
Antipolis (UNSA) and he joined on September 2003

the Mobile Communications department of Institut Eurécom in Sophia-
Antipolis as an Assistant Professor. He is/was involved in several French-
funded (Dipcast, Constellation, Rhodos, Cosinus, Airnet, WiNEM) and IST
FP6/7 (Widens, Newcom, Daidalos, E2R, Multinet, Unite, Chorist, iTetris,
Newcom++) projects. In the context of some of these projects, he designed
and developed an open, flexible and efficient architecture for the support
of heterogeneous radio technologies. This architecture was integrated in
EURECOM’s wireless software-radio platform. His current research interests
include WIMAX (802.16)-related communication mechanisms, QoS support
in IEEE 802.11-based networks, sensor and actuator networks (SANETs),
vehicle adhoc networks (VANETs), routing and TCP performance in wire-
less networks. He served as a technical reviewer of several international
conferences and journals. Additionally, he is a member of IEEE and IEEE
Communications Society. In April 2008, he was awarded the «Habilitation à
Diriger des Recherches» (HDR) from the University of Nice Sophia-Antipolis
for his research on wireless networking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

