#### МИНОБРНАУКИ РОССИИ

Государственное образовательное учреждение высшего профессионального образования

"Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"

им. В.И. Ульянова (Ленина)" (СПбГЭТУ)

Кафедра теоретических основ радиотехники \_\_\_\_\_\_

### А.А.ДАНИЛИН

## МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторной работы по дисциплине "Приборы и техника радиоизмерений"

# ИЗМЕРЕНИЕ ПАРАМЕТРОВ RLC-КОМПОНЕНТОВ РАДИОЭЛЕКТРОННЫХ СХЕМ

Санкт-Петербург

2022 г.

## ОГЛАВЛЕНИЕ

| 4. ИЗМЕРЕНИЕ ПАРАМЕТРОВ RLC-КОМПОНЕНТОВ                                 |     |
|-------------------------------------------------------------------------|-----|
| РАДИОЭЛЕКТРОННЫХ СХЕМ                                                   |     |
| 4.1. Параметры сосредоточенных элементов электрических схем             | 2   |
| 4.2. Параметры распределенных линий передачи                            | 8   |
| 4.3. Принцип действия и структурная схема измерителя LCR-821            | 10  |
| 4.4. Технические характеристики измерителя LCR-821                      | 14  |
| 4.5. Описание лабораторной установки                                    | 16  |
| 4.6. Задание и указания к выполнению работы                             | 18  |
| 4.6.1. Установка режима и калибровка измерителя 18                      |     |
| 4.6.2. Измерение параметров катушки индуктивности в диапазоне частот 19 |     |
| 4.6.3. Измерение параметров электролитического конденсатора 20          |     |
| 4.6.4. Измерение параметров варикапа 21                                 |     |
| 4.6.5. Измерение параметров коаксиального кабеля 21                     |     |
| 4.6.6. Измерение импеданса электродинамического громкоговорителя (по    |     |
| указанию преподавателя) 22                                              |     |
| 4.7. Содержание отчета                                                  | 22  |
| •                                                                       | 2.2 |

# 4. ИЗМЕРЕНИЕ ПАРАМЕТРОВ RLC-КОМПОНЕНТОВ РАДИОЭЛЕК-ТРОННЫХ СХЕМ

В работе изучаются методы измерения параметров пассивных компонентов радиоэлектронных схем в диапазоне частот с помощью автоматизированного прибора LCR -821. Также измеряются параметры коаксиального кабеля (волновое сопротивление, затухание и постоянная распространения), исследуются частотные свойства электродинамического громкоговорителя.

## 4.1. Параметры сосредоточенных элементов электрических схем

Низкочастотные электрические схемы включают в себя компоненты с сосредоточенными постоянными – резисторы, катушки индуктивности и конденсаторы (RLC элементы). Эти компоненты являются двухполюсниками (имеют два вывода). Более сложные компоненты (с тремя, четырьмя и более выводами) часто описывают схемами замещения, состоящими из двухполюсных элементов.

При работе с гармоническими сигналами свойства двухполюсников описывают с помощью *полного комплексного сопротивления* (*импеданса*) Z. Оно равно отношению комплексных амплитуд напряжения  $\dot{U}$  и тока  $\dot{I}$  на элементе. В нем выделяют активное R и реактивное R сопротивления R опротивления R опроти

$$Z = \dot{U}/\dot{I} = R + jX \tag{5.1}$$

В полярных координатах полное сопротивление выражают через модуль и фазовый угол:

$$Z = \left|Z\right| \exp(j\theta)$$
 , где  $\left|Z\right| = \sqrt{R^2 + X^2}$  ,  $\theta = arctg(\frac{X}{R})$  ,  $R = \left|Z\right| \cos(\theta)$  ,  $X = \left|Z\right| \sin(\theta)$  .

В ряде случаев удобнее использовать полную комплексную проводимость (адмиттанс) Y, обратную полному сопротивлению:

$$Y = G + jB = \dot{I}/\dot{U} = Z^{-1}$$
.

Размерность импеданса - Ом, адмиттанса - Сименс (См). В измерительной практике иногда используют общий термин «иммитанс» для объединения понятий "импеданс" и "адмиттанс».

Двухполюсники обычно представляют в виде последовательной или параллельной *схемы замещения* (рис. 5.1).

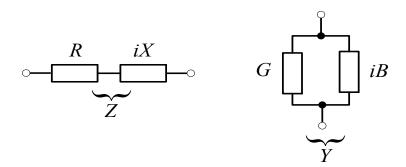



Рис. 5.1. Схемы замещения сосредоточенных элементов электрических цепей

При последовательной схеме элемент характеризуют активным R и реактивным X сопротивлениями, а при параллельной схеме – активной G и реактивной B проводимостями. Эти схемы замещения эквивалентны при условии, что параметры элементов связаны формулами

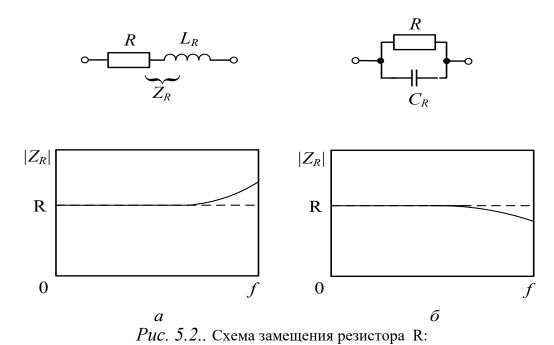
$$R = \frac{G}{G^2 + B^2}; \quad X = \frac{B}{G^2 + B^2}$$
,

$$G = \frac{R}{R^2 + X^2}; \quad B = \frac{X}{R^2 + X^2}.$$

Выбор той или иной схемы замещения определяется методом измерения, удобством представления результата и др.

Выделяют два типа реактивного импеданса — индуктивный и емкостной. Реактивное сопротивление импеданса индуктивного типа зависит от частоты f по закону  $X = 2\pi f L$ . Здесь L — индуктивность элемента, ее выражают в Генри - [Гн]. Фазовый угол сопротивления индуктивного типа положителен. Для емкостного типа импеданса  $X = \frac{-1}{2\pi f C}$ , где C - емкость элемента, размерность ее — Фарада [Ф], фазовый угол - отрицателен.

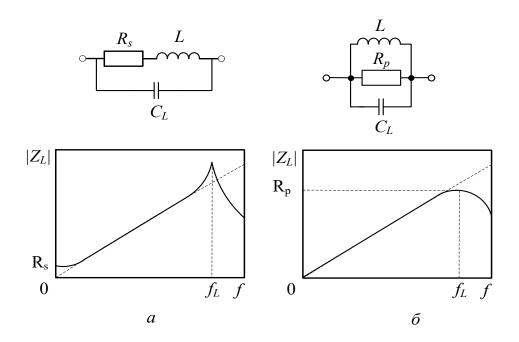
Для оценки качества реактивных элементов с малыми потерями используют отношение реактивных и активных сопротивлений (или проводимостей) схемы замещения. Так, качество катушек индуктивности обычно характеризуют добротностью, которая для последовательной схемы замещения равна:


$$Q_L = \frac{X}{R} = \frac{2\pi f L}{R}.$$
 (5.2)

Качество конденсаторов чаще оценивают обратной величиной - *тангенсом* угла потерь  $tg\delta$  или фактором потерь D:

$$D = tg\delta = \frac{G}{B} = \frac{1}{2\pi f C R_n} = \frac{1}{Q}.$$
 (5.3)

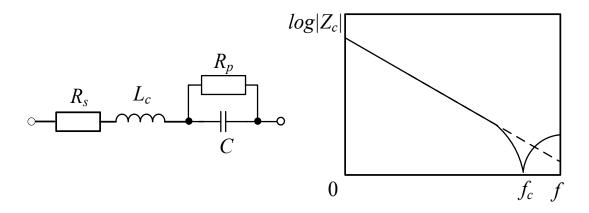
где Rp - активное сопротивление потерь в параллельной схеме замещения конденсатора (обратное активной проводимости конденсатора G).


Реальные элементы цепей (резисторы, конденсаторы, катушки индуктивностей) представляют в виде более сложных схем замещения, в которых учитывают активные потери разного вида и паразитные реактивные параметры



а – последовательная схема замещения проволочного резистора,
 б – параллельная схема замещения пленочного резистора

элемента. Рассмотрим схему замещения *резистора*, в которой, кроме активного сопротивления самого резистора R, учтены его паразитные реактивные параметры (рис.5.2). Если резистор сделан из отрезка проволоки с высоким удельным сопротивлением, то он обычно имеет паразитную индуктивность  $L_R$ . Для пленочных резисторов с высоким сопротивлением характерно наличие паразитной емкости  $C_R$ . Частотная характеристика модуля полного сопротивления |Z| резистора будет иметь отклонение от постоянного значения R на высоких частотах.


Потери в *катушках индуктивности* складываются из активных потерь в проводе, потерь в ферромагнитном сердечнике (который применяют в катушках с большой индуктивностью) и потерь в экране (для экранированных катушек). Схема замещения катушки индуктивности учитывает паразитную меж-



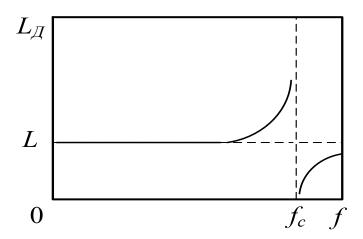
*Puc. 5.3.* Схемы замещения катушки индуктивности

витковую емкость  $C_L$ , сопротивление потерь в проводе  $R_S$  для последовательной схемы замещения (рис.5.3а) и сопротивление потерь в ферромагнитном сердечнике  $R_D$  для параллельной схемы (рис.5.3б). Межвитковая емкость особенно заметна в многослойных катушках с большим количеством витков. Она сказывается на высоких частотах и приводит к сильной зависимости эффективной (действующей) индуктивности от частоты.

Для конденсатора активные потери учитывают шунтирующим сопротивлением утечки Rp (потери в диэлектрике) и сопротивлением потерь в проводниках и обкладках Rs (рис.5.4).



*Puc. 5.4.*. Схема замещения реального конденсатора


На высоких частотах необходимо учитывать также индуктивность выводов конденсатора  $L_{\rm C}$ . У высокочастотных керамических конденсаторов основным паразитным параметром является параллельное сопротивление утечки. Для конденсаторов большой емкости сильнее сказывается последовательное сопротивление потерь Rs. Особенно это проявляется у электролитических конденсаторов, у которых эквивалентное последовательное сопротивление (его обозначают ESR — Equivalent Series Resistance) в ряде случаев соизмеримо с емкостным сопротивлением конденсатора. Параметр ESR является для таких конденсаторов важнейшим показателем его качества.

Наличие паразитных реактивных параметров у реальных компонентов приводит к тому, что частотная зависимость реактивной составляющей импеданса индуктивности или адмиттанса конденсатора отличаются от линейной. Поэтому при измерениях определяют *действующие* значения индуктивности и емкости. Их вводят из условия равенства реактивных сопротивлений (проводимостей) реального элемента и эквивалентной индуктивности (емкости) на частоте измерения. Как видно на рис. 5.3, частотная зависимость модуля полного сопротивления катушки отличается от линейной в области малых частот из-за последовательного сопротивления потерь и - в области больших частот, - из-за межвитковой емкости. Действующее значение индуктивности  $L_{\rm д}$  в предположении малых потерь ( $Rs << \omega L$ ) задают формулой

$$L_{\text{m}} = \frac{L}{1 - 2\pi f LC} = \frac{L}{1 - (f/f_L)^2},$$

где  $f_{\rm L}=1/(2\pi\sqrt{LC})$  — собственная резонансная частота катушки. Частотная зависимость действующего значения катушки индуктивности представлена на рис.5.5. На резонансной частоте действующее значение индуктивности стре-

мится к бесконечности. На частотах, больших  $f_{\rm L}$ , действующая индуктивности отрицательна (преобладает паразитная емкость катушки).



*Рис.* 5.5.. Частотная зависимость действующего значения индуктивности катушки

Для трехэлементной схемы замещения конденсатора частотная зависимость модуля полного импеданса в логарифмическом масштабе линейна практически до частоты собственного резонанса конденсатора (см. рис. 5.4) . При малых потерях ( $Rp >> \frac{1}{\omega C}$ ) действующее значение емкости конденсатора определяется формулой

$$C_{\pi} = \frac{C}{1 - 2\pi f LC} = \frac{C}{1 - (f/fc)^2},$$

где  $f_{\rm C}$  = 1/(2 $\pi\sqrt{LC}$ )— собственная резонансная частота конденсатора.

Для измерения параметров схемы замещения катушки и конденсатора недостаточно определить вещественную и мнимую части полного иммитанса — требуется знать их зависимость от частоты. Значения паразитных параметров катушки и конденсатора можно найти по результатам измерений действующих значений их индуктивностей (емкостей), как минимум, на двух частотах.

Измерение собственной индуктивности L и паразитной емкости катушки  $C_L$  проводят таким образом. Пусть  $L_{\mathcal{I}_1}$  и  $L_{\mathcal{I}_2}$  — действующие значения индуктивности катушки, измеренные на частотах  $f_1$  и  $f_2$  соответственно. В этом случае на основании эквивалентной схемы катушки (рис. 5.3, a), можно записать следующую систему уравнений:

$$\begin{cases}
\frac{1}{j2\pi f_1 L_{A_1}} = \frac{1}{j2\pi f_1 L} + j2\pi f_1 C_L, \\
\frac{1}{j2\pi f_2 L_{A_2}} = \frac{1}{j2\pi f_2 L} + j2\pi f_2 C_L,
\end{cases} (5.4)$$

где L и  $C_L$  – неизвестные значения собственной индуктивности и межвитковой емкости катушки. Решение системы (5.1) имеет следующий вид:

$$\begin{cases}
L = \frac{f_1^2 - f_2^2}{\left(f_1^2 / L_{\mathcal{I}_2}\right) - \left(f_2^2 / L_{\mathcal{I}_1}\right)}, \\
C_L = \left(\frac{1}{L_{\mathcal{I}_2}} - \frac{1}{L_{\mathcal{I}_1}}\right) \cdot \left(\left(2\pi f_1\right)^2 - \left(2\pi f_2\right)^2\right)^{-1}.
\end{cases} (5.5)$$

Аналогичные соотношения можно получить и для расчета собственной емкости и паразитных параметров конденсатора.

## 4.2. Параметры распределенных линий передачи

На высоких частотах в схемах применяют распределенные компоненты — отрезки линий передачи. Эквивалентная схема таких элементов - «длинная линия». Она представляет собой бесконечную цепочку погонных индуктивностей  $L_{\pi}$  и емкостей  $C_{\pi}$ . Отношение погонных параметров определяет волновое (или характеристическое) сопротивление линии передачи  $\rho$ :

$$\rho = \sqrt{\frac{L_{\rm n}}{C_{\rm n}}},$$

а их произведение —  $\kappa o \Rightarrow \phi \phi$ ициент распространения волны вдоль длинной линии  $\beta = 2\pi \cdot f \sqrt{L_{\rm n} C_{\rm n}}$ . Этот коэффициент определяет фазовую скорость распространения волны в линии передачи и, следовательно, фазовый набег сигнала на единицу длины. Его часто называют электрической длиной  $\theta$  линии передачи с геометрической длиной l:  $\theta = \beta \cdot l$ . Для реальной линии передачи с потерями (например, для коаксиального кабеля) погонные параметры включают также последовательное и параллельное сопротивления потерь. Коэффициент распространения при этом будет комплексным  $\gamma = \alpha + i \cdot \beta$ . Его вещественная часть —  $\kappa o \Rightarrow \phi \phi$ ициент затухания  $\alpha$ , мнимая часть —  $\kappa o \Rightarrow \phi \phi$ ициент  $\phi$ азы  $\beta$ .

Измеритель параметров RLC можно использовать для определения волнового сопротивления и постоянной распространения в коаксиальном кабеле. Для этого несколько раз измеряют комплексное входное сопротивление отрезка кабеля при различных нагрузках на его конце. Наиболее часто используют короткозамкнутую нагрузку (КЗ) и нагрузку холостого хода (ХХ). Теория длинных линий дает следующие формулы для расчета входных сопротивлений в этих случаях:

$$Z_{\text{K3}} = \rho \cdot th(\gamma l) = |Z_{\text{K3}}| \exp(\theta_{\text{K3}}), \ Z_{\text{XX}} = \frac{\rho}{th(\gamma l)} = |Z_{\text{XX}}| \exp(\theta_{\text{XX}}).$$

Здесь l — геометрическая длина отрезка линии,  $\operatorname{th}(\gamma l)$  — гиперболический тангенс от комплексного аргумента  $\gamma l$ ,  $\theta$  — фазовый угол (аргумент) входного импеданса. Отсюда определяют волновое сопротивление  $\rho = \sqrt{|Z_{\rm K3}| \cdot |Z_{\rm XX}|}$  и величину гиперболического тангенса  $\operatorname{th}(\gamma \cdot l) = \sqrt{Z_{\rm K3}/Z_{\rm XX}}$ . Расчетные формулы для коэффициента затухания отрезка линии длиной l выглядят так:

$$\alpha = \frac{1}{2l} \cdot \ln \left( \sqrt{\frac{(1 + thR)^2 + (thX)^2}{(1 - thR)^2 + (thX)^2}} \right), 1/M,$$
 (5.6)

и коэффициента фазы

$$\beta = \frac{1}{2l} \cdot (arctg(\frac{thX}{thR+1}) + arctg(\frac{thX}{1-thR})), \quad \text{рад/м.}$$
 (5.7).

В литературе используют также другую форму этого выражения

$$\beta = \frac{1}{2l} \cdot (\pi - arctg(\frac{thR+1}{thX}) + arctg(\frac{thR-1}{thX})),$$
 рад/м.

Здесь использованы обозначения вещественной thR и мнимой части thX  $th(\gamma \cdot l) = thR + i \cdot thX$ :

$$thR = \sqrt{\frac{|Z_{\kappa 3}|}{|Z_{\kappa y}|}}\cos(\frac{\theta_{\kappa 3} - \theta_{xx}}{2}) , \qquad thX = \sqrt{\frac{|Z_{\kappa 3}|}{|Z_{\kappa y}|}}\sin(\frac{\theta_{\kappa 3} - \theta_{xx}}{2})$$
 (5.8)

Ослабление (потери ) на единицу длины кабеля равны

$$A = 20 \lg(e^{\alpha}) = 8.6859 \cdot \frac{1}{2l} \cdot \ln\left(\sqrt{\frac{(1 + thR)^2 + (thX)^2}{(1 - thR)^2 + (thX)^2}}\right), \, \partial E / M$$
 (5.9)

Важным параметром коаксиального кабеля является *коэффициент укорочения* Ку. Он показывает, во сколько раз фазовая скорость в кабеле меньше скорости света в свободном пространстве:

$$K_{y} = 3 \cdot 10^{8} \frac{\beta}{2\pi \cdot f} \tag{5.10}$$

Коэффициент укорочения определяет соотношение между электрической длиной исследуемого кабеля и электрической длиной линии передачи с воздушным заполнением. Его величина зависит от параметров диэлектрического заполнения кабеля. Так, коаксиальные кабели, применяемые для передачи телевизионных сигналов, имеют волновое сопротивление 75 Ом, коэффициент укорочения в пределах 1,4...1,7 и постоянную затухания порядка долей дБ/м.

## 4.3. Принцип действия и структурная схема измерителя LCR-821

Для измерения активного сопротивления на постоянном и переменном токе, индуктивности и емкости на низких частотах используют многофункциональные аналоговые и цифровые мультиметры. Рабочий диапазон и точность таких приборов, как правило, ограничены. Более сложные измерения - получение частотных зависимостей, определение добротности и фактора потерь проводят специализированными приборами – измерителями иммитанса (импеданса и адмиттанса) или измерителями RLC.

Принцип действия используемого в работе измерителя основан на модифицированном варианте *метода вольтметра-амперметра*. Он состоит в измерении отношения *комплексных* амплитуд напряжения и тока на исследуемом компоненте. На практике для его реализации используют преобразователи импеданса на основе операционного усилителя переменного тока, охваченного глубокой ООС (рис. 5.6).

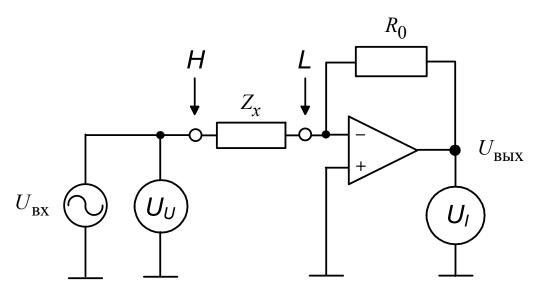



Рис. 5.6. Схема преобразования «Z-U»

В данной схеме ток через измеряемый элемент преобразуют в напряжение на выходе усилителя. Поэтому измерение импеданса  $Z_x$  сводится к измерению отношения комплексных амплитуд напряжений на входе и выходе усилителя. Такой способ измерения называют методом преобразования сопротивления в напряжение «Z - U».

Комплексную амплитуду напряжения  $\dot{U}_U=\dot{U}_{\rm BX}$  на входном зажиме, обозначенном «H» (высокий потенциал), измеряют векторным вольтметром  $U_U$ , который измеряет не только амплитуду, но и фазу входного напряжения. Ток через исследуемый элемент  $Z_{\chi}$  поступает на вход усилителя в точку, обозначенную «L» (низкий потенциал). Усилитель имеет большой коэффициент передачи и охвачен обратной связью через образцовый резистор  $R_0$ . При этом амплитуда выходного напряжения операционного усилителя  $U_{\rm BbIX}$ , охваченного глубокой ООС, определяется практически только отношением сопротивлений  $R_0/Z_{\chi}$  и, следовательно, пропорциональна току через исследуемый компонент  $\dot{U}_{\rm BbIX}=\dot{U}_I$ . Ее измеряют векторным вольтметром  $U_I$ . Отношение двух комплексных амплитуд напряжений дает величину искомого импеданса:

$$Z_x = R_0 \frac{\dot{U}_U}{\dot{U}_I} \,.$$

Образцовый резистор  $R_0$  определяет масштаб преобразования «Z-U». С его помощью устанавливают диапазон измерения прибора.

Рассмотрим реализацию данного метода в микропроцессорном измерителе LCR-821, упрощенная схема которого представлена на рис. 5.7 :

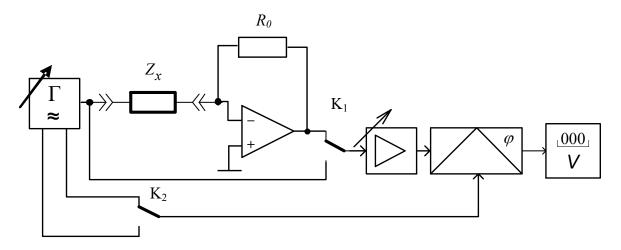
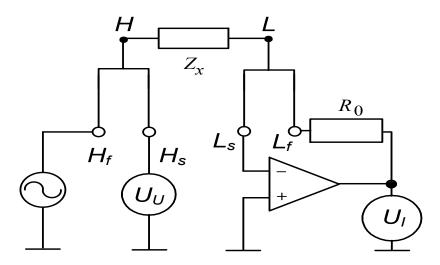



Рис. 5.7. Микропроцессорный измеритель параметров RLC компонентов

В приборе использована схема измерения комплексных амплитуд напряжения, состоящая из синхронного фазового детектора и цифрового вольтметра постоянного тока. Напряжения  $\dot{U}_U$  и  $\dot{U}_I$ , пропорциональные напряжению и току на исследуемого элементе, с помощью электронного коммутатора  $K_1$  по очереди подают на вход масштабного усилителя переменного тока. Его используют для переключения диапазона измерения иммитанса. Напряжение с выхода усилителя  $U_m \sin(\omega t + \theta)$ , пропорциональное  $\dot{U}_U$  или  $\dot{U}_I$ , поступает на синхронный фазовый детектор, состоящий из перемножителя напряжений и фильтра низкой частоты. На второй вход перемножителя через электронный коммутатор  $K_2$  с генератора поочередно подают опорные сигналы: сначала  $U_0 \sin(\omega t)$ , затем  $U_0 \cos(\omega t)$  (эти сигналы сдвинуты друг относительно друга на  $90^0$ ). На выходе перемножителя последовательно получают напряжения:

$$U_{m}\sin(\omega t + \theta) \cdot U_{0}\cos(\omega t) = \frac{U_{0}}{2}U_{m}\sin\theta + \frac{U_{0}}{2}U_{m}\sin(2\omega t + \theta)$$


$$U_{m}\sin(\omega t + \theta) \cdot U_{0}\sin(\omega t) = \frac{U_{0}}{2}U_{m}\cos\theta - \frac{U_{0}}{2}U_{m}\cos(2\omega t + \theta).$$

Гармонические составляющие с удвоенной частотой подавляют фильтром нижних частот. Постоянные напряжения на выходе фазового детектора, пропорциональные  $U_m \cos \theta$  и  $U_m \sin \theta$ , представляют собой вещественную и мнимую части соответствующих комплексных амплитуд. Эти напряжения

измеряют цифровым вольтметром постоянного тока. Результаты измерения (два вещественных числа для напряжения  $\dot{U}_U$  и два -для  $\dot{U}_I$ ) передаются в микропроцессорную систему, где производится расчет иммитанса, индуктивности и емкости, фактора потерь и добротности по формулам (5.1)...(5.3).


Такой способ измерения не требует источника переменного напряжения с точно установленной амплитудой. Для низкоомных объектов измеряют полное сопротивление  $Z_x$ , используя генератор с большим выходным сопротивлением (генератор тока). Это уменьшает влияние генератора на результат измерения. При исследовании высокоомных цепей удобнее использовать генератор напряжения с малым выходным сопротивлением. Результат получают в виде составляющих комплексной проводимости  $Y_x$ .

Для уменьшения влияния соединительных проводов в измерителях RLC используют *четырехпроводную схему* подключения исследуемого элемента (рис. 5.8).



Puc. 5.8. Четырехзажимная схема подключения RLC элемента

Входные клеммы прибора разделяют на две пары — пара входов высокого потенциала  $H_f$  и  $H_s$  и пара входов низкого потенциала  $L_f$  и  $L_s$ . Их обозначение идет от слов «forse» - «усиленный» и «sense» - «чувствительный». Пары проводников соединяют в одной точке на разъемах типа «крокодил» (рис. 5.9). Исследуемый элемент подключают к этим разъемам. Соединение проводников  $H_f$  -  $H_s$  и  $L_f$  -  $L_s$  происходит непосредственно на его выводах H и  $L_s$ .



*Рис.* 5.9. Подключение резистора к клеммам H и L

Поскольку входное сопротивление операционного усилителя велико, то ток в проводнике L-Ls мал. Точка входа операционного усилителя Ls и точка подключения элемента L практически эквипотенциальны. Аналогично при таком соединении минимизируется падение напряжения на проводнике H-Hs, соединяющем высокоомный вольтметр  $U_U$  и точку подключения элемента H. Таким образом, в четырехпроводной схеме исключается влияние сопротивления соединительных проводов на результат измерения.

В приборе LCR-821 предусмотрена возможность подачи на исследуемый элемент постоянного напряжения и тока смещения как от внутреннего, так и от внешнего источника питания. Это позволяет исследовать зависимость измеряемых параметров от режима работы компонента. Например, можно измерить зависимость индуктивности катушки катушки с ферромагнитным сердечником от постоянного тока подмагничивания, зависимость емкости сегнетоэлектрического конденсатора от напряжения смещения, снять вольтфарадную характеристику варикапа и пр.

## 4.4. Технические характеристики измерителя LCR-821

Прибор предназначен для измерения сопротивления, ёмкости, индуктивности, тангенса угла потерь, добротности, эквивалентного последовательного или параллельного сопротивления, модуля комплексного сопротивления (|Z|) и фазового сдвига между током и напряжением ( $\theta$ ). Запуск измерений автоматический или ручной. В автоматическом режиме предусмотрено три скорости измерений — SLOW (примерно 1 измерение/с), MEDIUM — 3 измерения/с и FAST — более 7 измерений /с. В приборе обычно используют автома-

тический выбор предела измерения. Это несколько замедляет работу, поэтому при исследовании однотипных элементов (например, партии резисторов) удобно фиксировать предел измерения (режим RANGE HOLD).

Базовая погрешность прибора не хуже: по R, L, C, Z: 0.05%, при измерении D, Q: 0.0005; погрешность измерения фазы  $\theta$ :  $0.03^{\circ}$ . Частота тест-сигнала генератора может устанавливаться в пределах  $12 \ \Gamma \mu$  -  $200 \ \kappa \Gamma \mu$  на  $504 \ \phi$ иксированных частотах. Рабочая сетка частот устанавливается в приборе по следующему правилу

$$f = \begin{cases} \frac{3\kappa \Gamma u}{n}, & n = 13...250 & (12 \Gamma u..230 \Gamma u) \\ \frac{60\kappa \Gamma u}{n}, & n = 4...256 & (230 \Gamma u...15 \kappa \Gamma u) \\ \frac{200\kappa \Gamma u}{n}, & n = 1..13 & (15 \kappa \Gamma u...200 r Uw) \end{cases}$$

где n- целое число. При наборе требуемой частоты с панели управления прибор округляет ее до ближайшего значения собственной сетки частот.

Уровень тест-сигнала, подаваемого на исследуемый компонент, регулируется в пределах 0.005... 1.275 В с шагом 5 мВ. Выбор разного уровня сигнала необходим при измерении компонентов, параметры которых зависят от его амплитуды. Предусмотрен режим постоянного уровня тест-сигнала (C.V.), при котором на выходных зажимах поддерживается амплитуда сигнала, мало зависящая от импеданса исследуемого компонента.

Результаты выводятся на табло (5 значащих цифр) в абсолютных или относительных единицах (Δ-измерения). Режим усреднения результатов позволяет проводить многократные измерения для снижения случайной погрешности. Установленные предварительно параметры прибора могут быть сохранены в энергонезависимой памяти прибора и вызваны при его следующем включении. Прибор допускает полное управление с компьютера и вывод на компьютер результатов измерения через последовательный интерфейс RS-232C.

Основные технические параметры прибора LCR-821 приведены в таблице 5.1.

Таблица *5.1* 

| ХАРАКТЕРИСТИКИ     | ПАРАМЕТРЫ     | ЗНАЧЕНИЯ               |
|--------------------|---------------|------------------------|
| Диапазон измерения | Сопротивление | 0.00001 Ом - 99999 кОм |
| RLC                | (R, ESR, Z)   |                        |

|                | Емкость (С)      | 0.00001 пФ - 99999 мкФ           |
|----------------|------------------|----------------------------------|
|                | Индуктивность    | 0.00001 мГн - 99999 Гн           |
|                | (L)              |                                  |
|                | Добротность (Q)  | 0,0001 - 9999                    |
|                | Тангенс угла по- | 0,0001 - 9999                    |
|                | терь (D)         |                                  |
|                | Фазовый сдвиг    | -180,00180,00°                   |
|                | (θ)              |                                  |
|                | Режимы измере-   | R/Q, C/D, C/R, L/Q, L/R, Z/θ     |
|                | ния              |                                  |
|                | Запуск измере-   | Автоматический или ручной        |
|                | ний              |                                  |
|                | Схема измере-    | Параллельная/последовательная    |
|                | кин              |                                  |
|                | Частота тест-    | 12 Гц - 200 кГц, 504 фиксирован- |
|                | сигнала          | ные частотные точки              |
| СКОРОСТЬ ИЗМЕ- | Время одиноч-    | <=68 мс                          |
| РЕНИЙ          | ного измерения   |                                  |
|                | в режиме FAST    |                                  |
| ПОСТОЯННОЕ     | Внутренний ис-   | 2 B                              |
| СМЕЩЕНИЕ       | точник           |                                  |
|                | Внешний источ-   | 0 - 35 В (максимальный ток 200   |
|                | ник              | мА)                              |
| дополнительные | Режим усредне-   | 1255 измерений                   |
| ФУНКЦИИ        | кин              |                                  |
| ДИСПЛЕЙ        | Тип индикатора   | ЖКИ матрица (240 х 128 точек) с  |
|                |                  | подсветкой и регулировкой кон-   |
|                |                  | трастности.                      |
|                | Формат индика-   | 5 разрядов на основной шкале, 4  |
|                | ции              | разряда на дополнительной шкале  |

# 4.5. Описание лабораторной установки

В состав установки входит измеритель LCR -821, набор исследуемых компонентов, персональный компьютер, связанный с прибором

последовательным интерфейсом. Прибор управляется кнопочной панелью (цифры [0]...[9], знак [-] и кнопки [START],[ENTER]), а также с помощью экранного меню. Кнопочная панель имеет второй регистр для установки режима смещения [BIAS ON/OFF], режима постоянной амплитуды тестсигнала [C.V], режима фиксации диапазона измерения [R.H]. Установка частоты тест-сигнала производится нажатием кнопки [FREQ], набором требуемого значения (в кГц) и подтверждением ввода кнопкой [ENTER]. Ручной запуск измерений производится кнопкой [START]. Перевод в автоматический режим (непрерывные измерения) производят длительным нажатием этой кнопки.

Экранное меню управляется функциональными кнопками [F1]...[F5], расположенными справа от экрана. В меню предусмотрено переключение скорости измерений [F1], вида индикации результата [F2]: абсолютный формат – [VALUE], относительный [DELTA%], [DELTA]. Кнопкой [F3] производится выбор режима измерений, кнопка [F4] позволяет задать схему замещения – параллельную или последовательную. Установки более сложных опций прибора (режимы памяти, усреднения, калибровки и пр.) производится в пункте MENU, выбираемым по кнопке [F5].

В приборе предусмотрена возможность связи с персональным компьютером. Для этого используется последовательный интерфейс RS-232C с фиксированной скоростью 38400 бит/с. Длина пакета данных 8 бит, 1 стоповый бит, контроль четности отключен. Эти параметры необходимо установить в свойствах последовательного порта COM1 компьютера.

Фирменное программное обеспечение включает программу управления прибором LCR- viewer (файл LCR800.exe). Программа позволяет полностью дублировать все кнопочные команды управления прибором. При этом органы управления и дисплей блокируются. Результаты измерения с дисплея выводятся в текстовый файл вида LCR\_xxxx.txt, где xxxx – номер файла по порядку.

Для измерения частотных характеристик точечный режим измерения неудобен, так как ввод частоты с помощью кнопочной панели занимает довольно много времени. Упростить работу с прибором и автоматизировать измерение частотных характеристик позволяет программа LCR-meter, написанная на графическом языке среды LabVIEW. В ней предусмотрен выбор режима работы прибора и измерение параметров компонента в диапазоне частот 20Гц ...200 кГц. Полученные результаты выводятся в

таблицу и в виде графиков частотных зависимостей. Их можно экспортировать в электронную таблицу Excel, а также в буфер обмена с целью последующей обработки.

.

# 4.6. Задание и указания к выполнению работы

### 4.6.1. Установка режима и калибровка измерителя

Проверьте установку режима, используемого в данной лабораторной работе:

- [SPEED] = MEDI (длительность измерения порядка 300 мс);
- [DISPLAY] = VALUE (режим вывода значения результата измерения).
- [MODE] = L/Q.
- [CURCUIT] = SERIES (схема замещения –последовательная).
- [C.V] = OFF (режим постоянного уровня выходного напряжения отключен);
- [R.H] = OFF поддержка режима RANGE HOLD -фиксированного диапазона измерения отключена);
- [INT.B] = OFF внутренний источник смещения отключен (источник выбирается кнопкой [BIAS] и включается/выключается кнопкой [ON/OFF]).

Для исключения систематической погрешности перед проведением измерений прибор необходимо откалибровать. Калибровка прибора производится в ручном режиме управления (MANU). Если в приборе установлен автоматический режим измерений AUTO, для перехода в ручной необходимо длительно нажать кнопку [START].

Для калибровки разомкните клеммы L и H соединительного кабеля и включите режим калибровки холостого хода OPEN TEST (пункт [MENU] => [OFFSET] = CAP OFFSET). Дождитесь завершения процесса калибровки по слайд-индикатору на экране. Затем замкните клеммы L и H и проведите калибровку в режиме короткого замыкания SHORT TEST ([MENU] => [OFFSET] = R/L OFFSET). Выйдите из режима калибровки , нажав кнопку [EXIT]. Перейдите в автоматический режим измерений (AUTO), для чего необходимо длительно нажать кнопку [START].

Прибор откалиброван и готов к измерениям.

# 4.6.2. Измерение параметров катушки индуктивности в диапазоне ча-

Исследуемая катушка представляет собой соленоид на ферромагнитном сердечнике и имеет большую индуктивность, значительное активное сопротивление и заметную межвитковую емкость. Резонансная частота катушки лежит в диапазоне рабочих частот прибора.

Для измерения частотных параметров катушки запустите программу LCR-meter. Прибор при этом перейдет в режим полного управления от компьютера. Установите вид измерения полного сопротивления («Режим» => Z/Teta) и запустите программу кнопкой «СТАРТ».

Данные измерения выводятся в окна программы и в таблицу в поля <Data1>, <Data2>, где первый и второй параметры соответствуют обозначению выбранного режима. Например, для режима Z/Teta <Data1> - это модуль полного сопротивления, Ом, <Data2> - его аргумент, градусы.

Просмотрите зависимость фазового угла полного сопротивления катушки в диапазоне частот 20 Гц - 200 кГц и с помощью курсора «Data 2» приблизительно определите частоту резонанса катушки  $f_L$ . На этой частоте фазовый угол близок к нулю.

Измерьте частотные характеристики действующего значения индуктивности катушки и ее добротности («Режим» => L/Q), а также ее последовательного сопротивления («Режим» => L/R). Сохраните полученные диаграммы в графическом формате ([Export] => [Export Simplified Image]) . Для сохранения численных результатов измерения L,Q,R в файл используйте режим экспорта данных: по правой кнопке мыши на соответствующем графике выберите пункт [Export] => [Export Data to Excel]. Можно экспортировать всю таблицу данных: щелчок правой кнопкой на таблице и выбор пункта выпадающего меню [Сору Data] позволяют скопировать в буфер обмена всю таблицу, которую затем надо вставить в пустую книгу Excel.

Результаты измерений частотных характеристик катушки оформите в виде таблицы 5.2.

Таблица 5.2

| Частота, кГц | Параметр |
|--------------|----------|
|              |          |

| L, мГн | Q | Rs, Ом (кОм) |
|--------|---|--------------|
|        |   |              |
|        |   |              |
|        |   |              |

Постройте графики частотных зависимостей измеренных параметров. Определите собственную индуктивность и межвитковую емкость катушки. Для этого выберите слева от точки собственного резонанса катушки две частоты  $f_1$  и  $f_2$ , на которых действующие значения индуктивности катушки  $L_{\mathcal{I}_1}$  и  $L_{\mathcal{I}_2}$  отличаются достаточно заметно. Рассчитайте собственную индуктивность катушки L, собственную емкость катушки  $C_L$  по формулам (5.5) и резонансную частоту катушки

$$f_L = 1/(2\pi\sqrt{LC_L}).$$

## 4.6.3. Измерение параметров электролитического конденсатора

Исследуемый конденсатор имеет номинальную емкость 500 нФ. Исследуйте частотную зависимость его параметров во всем частотном диапазоне прибора с помощью программы LCR-meter. На первом этапе используйте режим измерения модуля и фазы полного сопротивления конденсатора  $Z/\theta$  («Режим» => Z/Teta). Сохраните полученные данные в Excel-файл. Затем измерьте емкость С и эквивалентное последовательное сопротивление конденсатора в режиме C/R и также сохраните данные в файл. Занесите результаты в таблицу 5.3. Постройте зависимости параметров конденсатора от частоты.

Таблица 5.3

| Частота, кГц | Параметр |        |        |         |  |
|--------------|----------|--------|--------|---------|--|
|              | С, нФ    | Rs, Ом | Z , Ом | θ, град |  |
|              |          |        |        |         |  |
|              |          |        |        |         |  |

### 4.6.4. Измерение параметров варикапа

В лабораторной работе измеряются параметры *варикапа*. Так называют запертый отрицательным напряжением смещения полупроводниковый диод. Для переменного тока он представляет собой конденсатор, емкость которого зависит от напряжения смещения.

Проведите измерение вольтфарадной характеристики варикапа в ручном режиме работы прибора, для чего необходимо выйти из программы LCR-meter (кнопка [ВЫХОД]). В ручном режиме можно использовать программу LCR800.exe или управлять работой прибора с его передней панели.

Установите рабочую частоту 200 кГц [FREQ] => 200, режим измерения – AUTO (устанавливается длительным нажатием кнопки [START]). Проведите измерение емкости и фактора потерь варикапа (режим работы C/D) при разном напряжении смещения, подаваемого от внешнего блока питания на разъемы на задней панели прибора. Установите на блоке питания ограничение тока порядка 5 мА, напряжение 1 В. Для подачи смещения на варикап установите режим прибора [EXT.B] = ON (выбирается кнопкой 7 - [BIAS] и включается/выключается кнопкой 8 - [ON/OFF]).

Измерьте емкость и добротность варикапа при различном напряжении смещения в пределах 1...29 В с шагом 2 В. Занесите результаты в таблицу 5.4. Постройте график вольт-фарадной характеристики варикапа.

Таблица 5.4

| Напряжение  |  |  |  |
|-------------|--|--|--|
| смещения, В |  |  |  |
| С, пФ       |  |  |  |
|             |  |  |  |
| D           |  |  |  |
|             |  |  |  |

Выключите режим внешнего смещения кнопкой [BIAS]=INT.B, отключите внутренний источник смещения [INT.B] = OFF (кнопкой [ON/OFF]).

## 4.6.5. Измерение параметров коаксиального кабеля

В лабораторной работе измеряются параметры отрезка стандартного коаксиального кабеля длиной 4 м на частоте 200 кГц. Установите режим измерения  $Z/\theta$ . Подключите к прибору кабель, разомкнутый на конце (переключатель в положении XX), и измерьте его входное сопротивление  $Z_{xx}$ . Затем закоротите конец кабеля (переключатель в положении K3) и измерьте полное

входное сопротивление  $Z_{\kappa_3}$ . Рассчитайте волновое сопротивление кабеля  $\rho = \sqrt{|Z_{\kappa_3}| \cdot |Z_{\kappa_3}|}$ , его постоянную затухания  $\alpha$ , коэффициент фазы  $\beta$ , потери A, дB, и коэффициент укорочения кабеля  $K_y$  (формулы (5.6)...(5.10)). Занесите результаты измерений и расчетов в таблицу 5.5.

Таблица 5.5

| f, кГц | Z <sub>xx</sub>  ,<br>Ом | θ <sub>xx</sub> ,<br>град | Z <sub>к3</sub>  ,<br>Ом | θ <sub>кз</sub> ,<br>град | ρ,<br>Οм | α,<br>1/м | А,<br>дБ/м | β,<br>рад/м | K <sub>y</sub> |
|--------|--------------------------|---------------------------|--------------------------|---------------------------|----------|-----------|------------|-------------|----------------|
| 200    |                          |                           |                          |                           |          |           |            |             |                |

# 4.6.6. Измерение импеданса электродинамического громкоговорителя (по указанию преподавателя)

Важной характеристикой электродинамического громкоговорителя («динамика») является зависимость его полного сопротивления от частоты. По ней определяют собственную резонансную частоту подвижной части устройства, на которой и ниже ее использовать динамик не рекомендуется из-за сильных нелинейных искажений.

Исследуйте частотную зависимость модуля и фазы сопротивления динамика («Режим» => Z/Teta) с использованием программы LCR-meter по методике п.5.6.1. Определите резонансную частоту динамика по нулевому значению фазового угла. Экспортируйте данные частотной характеристики и занесите результаты в таблицу по форме 5.2. Постройте зависимости параметров динамика от частоты.

## 4.7. Содержание отчета

Отчет по лабораторной работе должен содержать структурную схему прибора, расчетные формулы, таблицы и графики данных измерений и расчетов, краткие выводы по лабораторной работе.

## 4.8. Контрольные вопросы

- 1. Чем отличаются импедансы катушки индуктивности и конденсатора?
- 2. Что такое добротность и фактор потерь катушки индуктивности и конденсатора? В каких случаях используют тот или иной параметр?

- 3. Что такое «действующее» значение индуктивности катушки? В каком случае действующее значение индуктивности отрицательно? На какой частоте ее действующее значение стремится к бесконечности?
- 4. Как строят измерители иммитанса, использующие преобразование сопротивления в напряжение?
- 5. Укажите составляющие погрешности измерителя иммитанса, использующего преобразование сопротивления в напряжение.
- 6. Для чего в измерителе иммитанса переключают коэффициент передачи масштабного усилителя?
- 7. Каков принцип действия векторного вольтметра в измерителе иммитанса?
- 8. Какие требования предъявляют к цифровому вольтметру в измерителе иммитанса? Что он должен измерять?
- 9. Для чего в измерителях иммитанса предусматривают подачу постоянного напряжения (или тока) на исследуемый элемент?
- 10.Для чего используют четырехпроводную схему подключения исследуемого элемента к измерителю иммитанса? Какую погрешность при этом исключают?